Какая типизация реализована в python

Какая типизация реализована в python

3. Data model¶

Objects are Python’s abstraction for data. All data in a Python program is represented by objects or by relations between objects. (In a sense, and in conformance to Von Neumann’s model of a “stored program computer”, code is also represented by objects.)

Every object has an identity, a type and a value. An object’s identity never changes once it has been created; you may think of it as the object’s address in memory. The ‘ is ’ operator compares the identity of two objects; the id() function returns an integer representing its identity.

CPython implementation detail: For CPython, id(x) is the memory address where x is stored.

An object’s type determines the operations that the object supports (e.g., “does it have a length?”) and also defines the possible values for objects of that type. The type() function returns an object’s type (which is an object itself). Like its identity, an object’s type is also unchangeable. 1

The value of some objects can change. Objects whose value can change are said to be mutable; objects whose value is unchangeable once they are created are called immutable. (The value of an immutable container object that contains a reference to a mutable object can change when the latter’s value is changed; however the container is still considered immutable, because the collection of objects it contains cannot be changed. So, immutability is not strictly the same as having an unchangeable value, it is more subtle.) An object’s mutability is determined by its type; for instance, numbers, strings and tuples are immutable, while dictionaries and lists are mutable.

Objects are never explicitly destroyed; however, when they become unreachable they may be garbage-collected. An implementation is allowed to postpone garbage collection or omit it altogether — it is a matter of implementation quality how garbage collection is implemented, as long as no objects are collected that are still reachable.

CPython implementation detail: CPython currently uses a reference-counting scheme with (optional) delayed detection of cyclically linked garbage, which collects most objects as soon as they become unreachable, but is not guaranteed to collect garbage containing circular references. See the documentation of the gc module for information on controlling the collection of cyclic garbage. Other implementations act differently and CPython may change. Do not depend on immediate finalization of objects when they become unreachable (so you should always close files explicitly).

Note that the use of the implementation’s tracing or debugging facilities may keep objects alive that would normally be collectable. Also note that catching an exception with a ‘ try … except ’ statement may keep objects alive.

Some objects contain references to “external” resources such as open files or windows. It is understood that these resources are freed when the object is garbage-collected, but since garbage collection is not guaranteed to happen, such objects also provide an explicit way to release the external resource, usually a close() method. Programs are strongly recommended to explicitly close such objects. The ‘ try … finally ’ statement and the ‘ with ’ statement provide convenient ways to do this.

Some objects contain references to other objects; these are called containers. Examples of containers are tuples, lists and dictionaries. The references are part of a container’s value. In most cases, when we talk about the value of a container, we imply the values, not the identities of the contained objects; however, when we talk about the mutability of a container, only the identities of the immediately contained objects are implied. So, if an immutable container (like a tuple) contains a reference to a mutable object, its value changes if that mutable object is changed.

Types affect almost all aspects of object behavior. Even the importance of object identity is affected in some sense: for immutable types, operations that compute new values may actually return a reference to any existing object with the same type and value, while for mutable objects this is not allowed. E.g., after a = 1; b = 1 , a and b may or may not refer to the same object with the value one, depending on the implementation, but after c = []; d = [] , c and d are guaranteed to refer to two different, unique, newly created empty lists. (Note that c = d = [] assigns the same object to both c and d .)

3.2. The standard type hierarchy¶

Below is a list of the types that are built into Python. Extension modules (written in C, Java, or other languages, depending on the implementation) can define additional types. Future versions of Python may add types to the type hierarchy (e.g., rational numbers, efficiently stored arrays of integers, etc.), although such additions will often be provided via the standard library instead.

Some of the type descriptions below contain a paragraph listing ‘special attributes.’ These are attributes that provide access to the implementation and are not intended for general use. Their definition may change in the future.

This type has a single value. There is a single object with this value. This object is accessed through the built-in name None . It is used to signify the absence of a value in many situations, e.g., it is returned from functions that don’t explicitly return anything. Its truth value is false.

This type has a single value. There is a single object with this value. This object is accessed through the built-in name NotImplemented . Numeric methods and rich comparison methods should return this value if they do not implement the operation for the operands provided. (The interpreter will then try the reflected operation, or some other fallback, depending on the operator.) It should not be evaluated in a boolean context.

Changed in version 3.9: Evaluating NotImplemented in a boolean context is deprecated. While it currently evaluates as true, it will emit a DeprecationWarning . It will raise a TypeError in a future version of Python.

This type has a single value. There is a single object with this value. This object is accessed through the literal . or the built-in name Ellipsis . Its truth value is true.

These are created by numeric literals and returned as results by arithmetic operators and arithmetic built-in functions. Numeric objects are immutable; once created their value never changes. Python numbers are of course strongly related to mathematical numbers, but subject to the limitations of numerical representation in computers.

The string representations of the numeric classes, computed by __repr__() and __str__() , have the following properties:

They are valid numeric literals which, when passed to their class constructor, produce an object having the value of the original numeric.

The representation is in base 10, when possible.

Leading zeros, possibly excepting a single zero before a decimal point, are not shown.

Trailing zeros, possibly excepting a single zero after a decimal point, are not shown.

A sign is shown only when the number is negative.

Python distinguishes between integers, floating point numbers, and complex numbers:

These represent elements from the mathematical set of integers (positive and negative).

There are two types of integers:

These represent numbers in an unlimited range, subject to available (virtual) memory only. For the purpose of shift and mask operations, a binary representation is assumed, and negative numbers are represented in a variant of 2’s complement which gives the illusion of an infinite string of sign bits extending to the left.

These represent the truth values False and True. The two objects representing the values False and True are the only Boolean objects. The Boolean type is a subtype of the integer type, and Boolean values behave like the values 0 and 1, respectively, in almost all contexts, the exception being that when converted to a string, the strings "False" or "True" are returned, respectively.

The rules for integer representation are intended to give the most meaningful interpretation of shift and mask operations involving negative integers.

These represent machine-level double precision floating point numbers. You are at the mercy of the underlying machine architecture (and C or Java implementation) for the accepted range and handling of overflow. Python does not support single-precision floating point numbers; the savings in processor and memory usage that are usually the reason for using these are dwarfed by the overhead of using objects in Python, so there is no reason to complicate the language with two kinds of floating point numbers.

These represent complex numbers as a pair of machine-level double precision floating point numbers. The same caveats apply as for floating point numbers. The real and imaginary parts of a complex number z can be retrieved through the read-only attributes z.real and z.imag .

These represent finite ordered sets indexed by non-negative numbers. The built-in function len() returns the number of items of a sequence. When the length of a sequence is n, the index set contains the numbers 0, 1, …, n-1. Item i of sequence a is selected by a[i] .

Sequences also support slicing: a[i:j] selects all items with index k such that i <= k < j. When used as an expression, a slice is a sequence of the same type. This implies that the index set is renumbered so that it starts at 0.

Some sequences also support “extended slicing” with a third “step” parameter: a[i:j:k] selects all items of a with index x where x = i + n*k , n >= 0 and i <= x < j.

Sequences are distinguished according to their mutability:

An object of an immutable sequence type cannot change once it is created. (If the object contains references to other objects, these other objects may be mutable and may be changed; however, the collection of objects directly referenced by an immutable object cannot change.)

The following types are immutable sequences:

A string is a sequence of values that represent Unicode code points. All the code points in the range U+0000 — U+10FFFF can be represented in a string. Python doesn’t have a char type; instead, every code point in the string is represented as a string object with length 1 . The built-in function ord() converts a code point from its string form to an integer in the range 0 — 10FFFF ; chr() converts an integer in the range 0 — 10FFFF to the corresponding length 1 string object. str.encode() can be used to convert a str to bytes using the given text encoding, and bytes.decode() can be used to achieve the opposite.

The items of a tuple are arbitrary Python objects. Tuples of two or more items are formed by comma-separated lists of expressions. A tuple of one item (a ‘singleton’) can be formed by affixing a comma to an expression (an expression by itself does not create a tuple, since parentheses must be usable for grouping of expressions). An empty tuple can be formed by an empty pair of parentheses.

A bytes object is an immutable array. The items are 8-bit bytes, represented by integers in the range 0 <= x < 256. Bytes literals (like b’abc’ ) and the built-in bytes() constructor can be used to create bytes objects. Also, bytes objects can be decoded to strings via the decode() method.

Mutable sequences can be changed after they are created. The subscription and slicing notations can be used as the target of assignment and del (delete) statements.

There are currently two intrinsic mutable sequence types:

The items of a list are arbitrary Python objects. Lists are formed by placing a comma-separated list of expressions in square brackets. (Note that there are no special cases needed to form lists of length 0 or 1.)

A bytearray object is a mutable array. They are created by the built-in bytearray() constructor. Aside from being mutable (and hence unhashable), byte arrays otherwise provide the same interface and functionality as immutable bytes objects.

The extension module array provides an additional example of a mutable sequence type, as does the collections module.

These represent unordered, finite sets of unique, immutable objects. As such, they cannot be indexed by any subscript. However, they can be iterated over, and the built-in function len() returns the number of items in a set. Common uses for sets are fast membership testing, removing duplicates from a sequence, and computing mathematical operations such as intersection, union, difference, and symmetric difference.

For set elements, the same immutability rules apply as for dictionary keys. Note that numeric types obey the normal rules for numeric comparison: if two numbers compare equal (e.g., 1 and 1.0 ), only one of them can be contained in a set.

There are currently two intrinsic set types:

These represent a mutable set. They are created by the built-in set() constructor and can be modified afterwards by several methods, such as add() .

These represent an immutable set. They are created by the built-in frozenset() constructor. As a frozenset is immutable and hashable , it can be used again as an element of another set, or as a dictionary key.

These represent finite sets of objects indexed by arbitrary index sets. The subscript notation a[k] selects the item indexed by k from the mapping a ; this can be used in expressions and as the target of assignments or del statements. The built-in function len() returns the number of items in a mapping.

There is currently a single intrinsic mapping type:

These represent finite sets of objects indexed by nearly arbitrary values. The only types of values not acceptable as keys are values containing lists or dictionaries or other mutable types that are compared by value rather than by object identity, the reason being that the efficient implementation of dictionaries requires a key’s hash value to remain constant. Numeric types used for keys obey the normal rules for numeric comparison: if two numbers compare equal (e.g., 1 and 1.0 ) then they can be used interchangeably to index the same dictionary entry.

Dictionaries preserve insertion order, meaning that keys will be produced in the same order they were added sequentially over the dictionary. Replacing an existing key does not change the order, however removing a key and re-inserting it will add it to the end instead of keeping its old place.

Dictionaries are mutable; they can be created by the <. >notation (see section Dictionary displays ).

The extension modules dbm.ndbm and dbm.gnu provide additional examples of mapping types, as does the collections module.

Changed in version 3.7: Dictionaries did not preserve insertion order in versions of Python before 3.6. In CPython 3.6, insertion order was preserved, but it was considered an implementation detail at that time rather than a language guarantee.

These are the types to which the function call operation (see section Calls ) can be applied:

A user-defined function object is created by a function definition (see section Function definitions ). It should be called with an argument list containing the same number of items as the function’s formal parameter list.

The function’s documentation string, or None if unavailable; not inherited by subclasses.

The function’s name.

New in version 3.3.

The name of the module the function was defined in, or None if unavailable.

A tuple containing default argument values for those arguments that have defaults, or None if no arguments have a default value.

The code object representing the compiled function body.

A reference to the dictionary that holds the function’s global variables — the global namespace of the module in which the function was defined.

The namespace supporting arbitrary function attributes.

None or a tuple of cells that contain bindings for the function’s free variables. See below for information on the cell_contents attribute.

A dict containing annotations of parameters. The keys of the dict are the parameter names, and ‘return’ for the return annotation, if provided. For more information on working with this attribute, see Annotations Best Practices .

A dict containing defaults for keyword-only parameters.

Most of the attributes labelled “Writable” check the type of the assigned value.

Function objects also support getting and setting arbitrary attributes, which can be used, for example, to attach metadata to functions. Regular attribute dot-notation is used to get and set such attributes. Note that the current implementation only supports function attributes on user-defined functions. Function attributes on built-in functions may be supported in the future.

A cell object has the attribute cell_contents . This can be used to get the value of the cell, as well as set the value.

Additional information about a function’s definition can be retrieved from its code object; see the description of internal types below. The cell type can be accessed in the types module.

An instance method object combines a class, a class instance and any callable object (normally a user-defined function).

Special read-only attributes: __self__ is the class instance object, __func__ is the function object; __doc__ is the method’s documentation (same as __func__.__doc__ ); __name__ is the method name (same as __func__.__name__ ); __module__ is the name of the module the method was defined in, or None if unavailable.

Methods also support accessing (but not setting) the arbitrary function attributes on the underlying function object.

User-defined method objects may be created when getting an attribute of a class (perhaps via an instance of that class), if that attribute is a user-defined function object or a class method object.

When an instance method object is created by retrieving a user-defined function object from a class via one of its instances, its __self__ attribute is the instance, and the method object is said to be bound. The new method’s __func__ attribute is the original function object.

When an instance method object is created by retrieving a class method object from a class or instance, its __self__ attribute is the class itself, and its __func__ attribute is the function object underlying the class method.

When an instance method object is called, the underlying function ( __func__ ) is called, inserting the class instance ( __self__ ) in front of the argument list. For instance, when C is a class which contains a definition for a function f() , and x is an instance of C , calling x.f(1) is equivalent to calling C.f(x, 1) .

When an instance method object is derived from a class method object, the “class instance” stored in __self__ will actually be the class itself, so that calling either x.f(1) or C.f(1) is equivalent to calling f(C,1) where f is the underlying function.

Note that the transformation from function object to instance method object happens each time the attribute is retrieved from the instance. In some cases, a fruitful optimization is to assign the attribute to a local variable and call that local variable. Also notice that this transformation only happens for user-defined functions; other callable objects (and all non-callable objects) are retrieved without transformation. It is also important to note that user-defined functions which are attributes of a class instance are not converted to bound methods; this only happens when the function is an attribute of the class.

A function or method which uses the yield statement (see section The yield statement ) is called a generator function. Such a function, when called, always returns an iterator object which can be used to execute the body of the function: calling the iterator’s iterator.__next__() method will cause the function to execute until it provides a value using the yield statement. When the function executes a return statement or falls off the end, a StopIteration exception is raised and the iterator will have reached the end of the set of values to be returned.

A function or method which is defined using async def is called a coroutine function. Such a function, when called, returns a coroutine object. It may contain await expressions, as well as async with and async for statements. See also the Coroutine Objects section.

Asynchronous generator functions

A function or method which is defined using async def and which uses the yield statement is called a asynchronous generator function. Such a function, when called, returns an asynchronous iterator object which can be used in an async for statement to execute the body of the function.

Calling the asynchronous iterator’s aiterator.__anext__ method will return an awaitable which when awaited will execute until it provides a value using the yield expression. When the function executes an empty return statement or falls off the end, a StopAsyncIteration exception is raised and the asynchronous iterator will have reached the end of the set of values to be yielded.

A built-in function object is a wrapper around a C function. Examples of built-in functions are len() and math.sin() ( math is a standard built-in module). The number and type of the arguments are determined by the C function. Special read-only attributes: __doc__ is the function’s documentation string, or None if unavailable; __name__ is the function’s name; __self__ is set to None (but see the next item); __module__ is the name of the module the function was defined in or None if unavailable.

This is really a different disguise of a built-in function, this time containing an object passed to the C function as an implicit extra argument. An example of a built-in method is alist.append() , assuming alist is a list object. In this case, the special read-only attribute __self__ is set to the object denoted by alist.

Classes are callable. These objects normally act as factories for new instances of themselves, but variations are possible for class types that override __new__() . The arguments of the call are passed to __new__() and, in the typical case, to __init__() to initialize the new instance.

Instances of arbitrary classes can be made callable by defining a __call__() method in their class.

Modules are a basic organizational unit of Python code, and are created by the import system as invoked either by the import statement, or by calling functions such as importlib.import_module() and built-in __import__() . A module object has a namespace implemented by a dictionary object (this is the dictionary referenced by the __globals__ attribute of functions defined in the module). Attribute references are translated to lookups in this dictionary, e.g., m.x is equivalent to m.__dict__["x"] . A module object does not contain the code object used to initialize the module (since it isn’t needed once the initialization is done).

Attribute assignment updates the module’s namespace dictionary, e.g., m.x = 1 is equivalent to m.__dict__["x"] = 1 .

Predefined (writable) attributes:


The module’s name.


The module’s documentation string, or None if unavailable.


The pathname of the file from which the module was loaded, if it was loaded from a file. The __file__ attribute may be missing for certain types of modules, such as C modules that are statically linked into the interpreter. For extension modules loaded dynamically from a shared library, it’s the pathname of the shared library file.


A dictionary containing variable annotations collected during module body execution. For best practices on working with __annotations__ , please see Annotations Best Practices .

Special read-only attribute: __dict__ is the module’s namespace as a dictionary object.

CPython implementation detail: Because of the way CPython clears module dictionaries, the module dictionary will be cleared when the module falls out of scope even if the dictionary still has live references. To avoid this, copy the dictionary or keep the module around while using its dictionary directly.

Custom class types are typically created by class definitions (see section Class definitions ). A class has a namespace implemented by a dictionary object. Class attribute references are translated to lookups in this dictionary, e.g., C.x is translated to C.__dict__["x"] (although there are a number of hooks which allow for other means of locating attributes). When the attribute name is not found there, the attribute search continues in the base classes. This search of the base classes uses the C3 method resolution order which behaves correctly even in the presence of ‘diamond’ inheritance structures where there are multiple inheritance paths leading back to a common ancestor. Additional details on the C3 MRO used by Python can be found in the documentation accompanying the 2.3 release at https://www.python.org/download/releases/2.3/mro/.

When a class attribute reference (for class C , say) would yield a class method object, it is transformed into an instance method object whose __self__ attribute is C . When it would yield a static method object, it is transformed into the object wrapped by the static method object. See section Implementing Descriptors for another way in which attributes retrieved from a class may differ from those actually contained in its __dict__ .

Class attribute assignments update the class’s dictionary, never the dictionary of a base class.

A class object can be called (see above) to yield a class instance (see below).


The class name.


The name of the module in which the class was defined.


The dictionary containing the class’s namespace.


A tuple containing the base classes, in the order of their occurrence in the base class list.


The class’s documentation string, or None if undefined.


A dictionary containing variable annotations collected during class body execution. For best practices on working with __annotations__ , please see Annotations Best Practices .

A class instance is created by calling a class object (see above). A class instance has a namespace implemented as a dictionary which is the first place in which attribute references are searched. When an attribute is not found there, and the instance’s class has an attribute by that name, the search continues with the class attributes. If a class attribute is found that is a user-defined function object, it is transformed into an instance method object whose __self__ attribute is the instance. Static method and class method objects are also transformed; see above under “Classes”. See section Implementing Descriptors for another way in which attributes of a class retrieved via its instances may differ from the objects actually stored in the class’s __dict__ . If no class attribute is found, and the object’s class has a __getattr__() method, that is called to satisfy the lookup.

Attribute assignments and deletions update the instance’s dictionary, never a class’s dictionary. If the class has a __setattr__() or __delattr__() method, this is called instead of updating the instance dictionary directly.

Class instances can pretend to be numbers, sequences, or mappings if they have methods with certain special names. See section Special method names .

Special attributes: __dict__ is the attribute dictionary; __class__ is the instance’s class.

I/O objects (also known as file objects)

A file object represents an open file. Various shortcuts are available to create file objects: the open() built-in function, and also os.popen() , os.fdopen() , and the makefile() method of socket objects (and perhaps by other functions or methods provided by extension modules).

The objects sys.stdin , sys.stdout and sys.stderr are initialized to file objects corresponding to the interpreter’s standard input, output and error streams; they are all open in text mode and therefore follow the interface defined by the io.TextIOBase abstract class.

A few types used internally by the interpreter are exposed to the user. Their definitions may change with future versions of the interpreter, but they are mentioned here for completeness.

Code objects represent byte-compiled executable Python code, or bytecode . The difference between a code object and a function object is that the function object contains an explicit reference to the function’s globals (the module in which it was defined), while a code object contains no context; also the default argument values are stored in the function object, not in the code object (because they represent values calculated at run-time). Unlike function objects, code objects are immutable and contain no references (directly or indirectly) to mutable objects.

Special read-only attributes: co_name gives the function name; co_argcount is the total number of positional arguments (including positional-only arguments and arguments with default values); co_posonlyargcount is the number of positional-only arguments (including arguments with default values); co_kwonlyargcount is the number of keyword-only arguments (including arguments with default values); co_nlocals is the number of local variables used by the function (including arguments); co_varnames is a tuple containing the names of the local variables (starting with the argument names); co_cellvars is a tuple containing the names of local variables that are referenced by nested functions; co_freevars is a tuple containing the names of free variables; co_code is a string representing the sequence of bytecode instructions; co_consts is a tuple containing the literals used by the bytecode; co_names is a tuple containing the names used by the bytecode; co_filename is the filename from which the code was compiled; co_firstlineno is the first line number of the function; co_lnotab is a string encoding the mapping from bytecode offsets to line numbers (for details see the source code of the interpreter); co_stacksize is the required stack size; co_flags is an integer encoding a number of flags for the interpreter.

The following flag bits are defined for co_flags : bit 0x04 is set if the function uses the *arguments syntax to accept an arbitrary number of positional arguments; bit 0x08 is set if the function uses the **keywords syntax to accept arbitrary keyword arguments; bit 0x20 is set if the function is a generator.

Future feature declarations ( from __future__ import division ) also use bits in co_flags to indicate whether a code object was compiled with a particular feature enabled: bit 0x2000 is set if the function was compiled with future division enabled; bits 0x10 and 0x1000 were used in earlier versions of Python.

Other bits in co_flags are reserved for internal use.

If a code object represents a function, the first item in co_consts is the documentation string of the function, or None if undefined.

Frame objects represent execution frames. They may occur in traceback objects (see below), and are also passed to registered trace functions.

Special read-only attributes: f_back is to the previous stack frame (towards the caller), or None if this is the bottom stack frame; f_code is the code object being executed in this frame; f_locals is the dictionary used to look up local variables; f_globals is used for global variables; f_builtins is used for built-in (intrinsic) names; f_lasti gives the precise instruction (this is an index into the bytecode string of the code object).

Accessing f_code raises an auditing event object.__getattr__ with arguments obj and "f_code" .

Special writable attributes: f_trace , if not None , is a function called for various events during code execution (this is used by the debugger). Normally an event is triggered for each new source line — this can be disabled by setting f_trace_lines to False .

Implementations may allow per-opcode events to be requested by setting f_trace_opcodes to True . Note that this may lead to undefined interpreter behaviour if exceptions raised by the trace function escape to the function being traced.

f_lineno is the current line number of the frame — writing to this from within a trace function jumps to the given line (only for the bottom-most frame). A debugger can implement a Jump command (aka Set Next Statement) by writing to f_lineno.

Frame objects support one method:

This method clears all references to local variables held by the frame. Also, if the frame belonged to a generator, the generator is finalized. This helps break reference cycles involving frame objects (for example when catching an exception and storing its traceback for later use).

RuntimeError is raised if the frame is currently executing.

New in version 3.4.

Traceback objects represent a stack trace of an exception. A traceback object is implicitly created when an exception occurs, and may also be explicitly created by calling types.TracebackType .

For implicitly created tracebacks, when the search for an exception handler unwinds the execution stack, at each unwound level a traceback object is inserted in front of the current traceback. When an exception handler is entered, the stack trace is made available to the program. (See section The try statement .) It is accessible as the third item of the tuple returned by sys.exc_info() , and as the __traceback__ attribute of the caught exception.

When the program contains no suitable handler, the stack trace is written (nicely formatted) to the standard error stream; if the interpreter is interactive, it is also made available to the user as sys.last_traceback .

For explicitly created tracebacks, it is up to the creator of the traceback to determine how the tb_next attributes should be linked to form a full stack trace.

Special read-only attributes: tb_frame points to the execution frame of the current level; tb_lineno gives the line number where the exception occurred; tb_lasti indicates the precise instruction. The line number and last instruction in the traceback may differ from the line number of its frame object if the exception occurred in a try statement with no matching except clause or with a finally clause.

Accessing tb_frame raises an auditing event object.__getattr__ with arguments obj and "tb_frame" .

Special writable attribute: tb_next is the next level in the stack trace (towards the frame where the exception occurred), or None if there is no next level.

Changed in version 3.7: Traceback objects can now be explicitly instantiated from Python code, and the tb_next attribute of existing instances can be updated.

Slice objects are used to represent slices for __getitem__() methods. They are also created by the built-in slice() function.

Special read-only attributes: start is the lower bound; stop is the upper bound; step is the step value; each is None if omitted. These attributes can have any type.

Slice objects support one method:

slice. indices ( self , length ) ¶

This method takes a single integer argument length and computes information about the slice that the slice object would describe if applied to a sequence of length items. It returns a tuple of three integers; respectively these are the start and stop indices and the step or stride length of the slice. Missing or out-of-bounds indices are handled in a manner consistent with regular slices.

Static method objects

Static method objects provide a way of defeating the transformation of function objects to method objects described above. A static method object is a wrapper around any other object, usually a user-defined method object. When a static method object is retrieved from a class or a class instance, the object actually returned is the wrapped object, which is not subject to any further transformation. Static method objects are also callable. Static method objects are created by the built-in staticmethod() constructor.

Class method objects

A class method object, like a static method object, is a wrapper around another object that alters the way in which that object is retrieved from classes and class instances. The behaviour of class method objects upon such retrieval is described above, under “User-defined methods”. Class method objects are created by the built-in classmethod() constructor.

3.3. Special method names¶

A class can implement certain operations that are invoked by special syntax (such as arithmetic operations or subscripting and slicing) by defining methods with special names. This is Python’s approach to operator overloading, allowing classes to define their own behavior with respect to language operators. For instance, if a class defines a method named __getitem__() , and x is an instance of this class, then x[i] is roughly equivalent to type(x).__getitem__(x, i) . Except where mentioned, attempts to execute an operation raise an exception when no appropriate method is defined (typically AttributeError or TypeError ).

Setting a special method to None indicates that the corresponding operation is not available. For example, if a class sets __iter__() to None , the class is not iterable, so calling iter() on its instances will raise a TypeError (without falling back to __getitem__() ). 2

When implementing a class that emulates any built-in type, it is important that the emulation only be implemented to the degree that it makes sense for the object being modelled. For example, some sequences may work well with retrieval of individual elements, but extracting a slice may not make sense. (One example of this is the NodeList interface in the W3C’s Document Object Model.)

3.3.1. Basic customization¶

Called to create a new instance of class cls. __new__() is a static method (special-cased so you need not declare it as such) that takes the class of which an instance was requested as its first argument. The remaining arguments are those passed to the object constructor expression (the call to the class). The return value of __new__() should be the new object instance (usually an instance of cls).

Typical implementations create a new instance of the class by invoking the superclass’s __new__() method using super().__new__(cls[, . ]) with appropriate arguments and then modifying the newly created instance as necessary before returning it.

If __new__() is invoked during object construction and it returns an instance of cls, then the new instance’s __init__() method will be invoked like __init__(self[, . ]) , where self is the new instance and the remaining arguments are the same as were passed to the object constructor.

If __new__() does not return an instance of cls, then the new instance’s __init__() method will not be invoked.

__new__() is intended mainly to allow subclasses of immutable types (like int, str, or tuple) to customize instance creation. It is also commonly overridden in custom metaclasses in order to customize class creation.

Called after the instance has been created (by __new__() ), but before it is returned to the caller. The arguments are those passed to the class constructor expression. If a base class has an __init__() method, the derived class’s __init__() method, if any, must explicitly call it to ensure proper initialization of the base class part of the instance; for example: super().__init__([args. ]) .

Because __new__() and __init__() work together in constructing objects ( __new__() to create it, and __init__() to customize it), no non- None value may be returned by __init__() ; doing so will cause a TypeError to be raised at runtime.

object. __del__ ( self ) ¶

Called when the instance is about to be destroyed. This is also called a finalizer or (improperly) a destructor. If a base class has a __del__() method, the derived class’s __del__() method, if any, must explicitly call it to ensure proper deletion of the base class part of the instance.

It is possible (though not recommended!) for the __del__() method to postpone destruction of the instance by creating a new reference to it. This is called object resurrection. It is implementation-dependent whether __del__() is called a second time when a resurrected object is about to be destroyed; the current CPython implementation only calls it once.

It is not guaranteed that __del__() methods are called for objects that still exist when the interpreter exits.

del x doesn’t directly call x.__del__() — the former decrements the reference count for x by one, and the latter is only called when x ’s reference count reaches zero.

CPython implementation detail: It is possible for a reference cycle to prevent the reference count of an object from going to zero. In this case, the cycle will be later detected and deleted by the cyclic garbage collector . A common cause of reference cycles is when an exception has been caught in a local variable. The frame’s locals then reference the exception, which references its own traceback, which references the locals of all frames caught in the traceback.

Documentation for the gc module.

Due to the precarious circumstances under which __del__() methods are invoked, exceptions that occur during their execution are ignored, and a warning is printed to sys.stderr instead. In particular:

__del__() can be invoked when arbitrary code is being executed, including from any arbitrary thread. If __del__() needs to take a lock or invoke any other blocking resource, it may deadlock as the resource may already be taken by the code that gets interrupted to execute __del__() .

__del__() can be executed during interpreter shutdown. As a consequence, the global variables it needs to access (including other modules) may already have been deleted or set to None . Python guarantees that globals whose name begins with a single underscore are deleted from their module before other globals are deleted; if no other references to such globals exist, this may help in assuring that imported modules are still available at the time when the __del__() method is called.

Called by the repr() built-in function to compute the “official” string representation of an object. If at all possible, this should look like a valid Python expression that could be used to recreate an object with the same value (given an appropriate environment). If this is not possible, a string of the form <. some useful description. > should be returned. The return value must be a string object. If a class defines __repr__() but not __str__() , then __repr__() is also used when an “informal” string representation of instances of that class is required.

This is typically used for debugging, so it is important that the representation is information-rich and unambiguous.

object. __str__ ( self ) ¶

Called by str(object) and the built-in functions format() and print() to compute the “informal” or nicely printable string representation of an object. The return value must be a string object.

This method differs from object.__repr__() in that there is no expectation that __str__() return a valid Python expression: a more convenient or concise representation can be used.

The default implementation defined by the built-in type object calls object.__repr__() .

object. __bytes__ ( self ) ¶

Called by bytes to compute a byte-string representation of an object. This should return a bytes object.

object. __format__ ( self , format_spec ) ¶

Called by the format() built-in function, and by extension, evaluation of formatted string literals and the str.format() method, to produce a “formatted” string representation of an object. The format_spec argument is a string that contains a description of the formatting options desired. The interpretation of the format_spec argument is up to the type implementing __format__() , however most classes will either delegate formatting to one of the built-in types, or use a similar formatting option syntax.

See Format Specification Mini-Language for a description of the standard formatting syntax.

The return value must be a string object.

Changed in version 3.4: The __format__ method of object itself raises a TypeError if passed any non-empty string.

Changed in version 3.7: object.__format__(x, ») is now equivalent to str(x) rather than format(str(x), ») .

These are the so-called “rich comparison” methods. The correspondence between operator symbols and method names is as follows: x<y calls x.__lt__(y) , x<=y calls x.__le__(y) , x==y calls x.__eq__(y) , x!=y calls x.__ne__(y) , x>y calls x.__gt__(y) , and x>=y calls x.__ge__(y) .

A rich comparison method may return the singleton NotImplemented if it does not implement the operation for a given pair of arguments. By convention, False and True are returned for a successful comparison. However, these methods can return any value, so if the comparison operator is used in a Boolean context (e.g., in the condition of an if statement), Python will call bool() on the value to determine if the result is true or false.

By default, object implements __eq__() by using is , returning NotImplemented in the case of a false comparison: True if x is y else NotImplemented . For __ne__() , by default it delegates to __eq__() and inverts the result unless it is NotImplemented . There are no other implied relationships among the comparison operators or default implementations; for example, the truth of (x<y or x==y) does not imply x<=y . To automatically generate ordering operations from a single root operation, see functools.total_ordering() .

See the paragraph on __hash__() for some important notes on creating hashable objects which support custom comparison operations and are usable as dictionary keys.

There are no swapped-argument versions of these methods (to be used when the left argument does not support the operation but the right argument does); rather, __lt__() and __gt__() are each other’s reflection, __le__() and __ge__() are each other’s reflection, and __eq__() and __ne__() are their own reflection. If the operands are of different types, and right operand’s type is a direct or indirect subclass of the left operand’s type, the reflected method of the right operand has priority, otherwise the left operand’s method has priority. Virtual subclassing is not considered.

object. __hash__ ( self ) ¶

Called by built-in function hash() and for operations on members of hashed collections including set , frozenset , and dict . The __hash__() method should return an integer. The only required property is that objects which compare equal have the same hash value; it is advised to mix together the hash values of the components of the object that also play a part in comparison of objects by packing them into a tuple and hashing the tuple. Example:

hash() truncates the value returned from an object’s custom __hash__() method to the size of a Py_ssize_t . This is typically 8 bytes on 64-bit builds and 4 bytes on 32-bit builds. If an object’s __hash__() must interoperate on builds of different bit sizes, be sure to check the width on all supported builds. An easy way to do this is with python -c "import sys; print(sys.hash_info.width)" .

If a class does not define an __eq__() method it should not define a __hash__() operation either; if it defines __eq__() but not __hash__() , its instances will not be usable as items in hashable collections. If a class defines mutable objects and implements an __eq__() method, it should not implement __hash__() , since the implementation of hashable collections requires that a key’s hash value is immutable (if the object’s hash value changes, it will be in the wrong hash bucket).

User-defined classes have __eq__() and __hash__() methods by default; with them, all objects compare unequal (except with themselves) and x.__hash__() returns an appropriate value such that x == y implies both that x is y and hash(x) == hash(y) .

A class that overrides __eq__() and does not define __hash__() will have its __hash__() implicitly set to None . When the __hash__() method of a class is None , instances of the class will raise an appropriate TypeError when a program attempts to retrieve their hash value, and will also be correctly identified as unhashable when checking isinstance(obj, collections.abc.Hashable) .

If a class that overrides __eq__() needs to retain the implementation of __hash__() from a parent class, the interpreter must be told this explicitly by setting __hash__ = <ParentClass>.__hash__ .

If a class that does not override __eq__() wishes to suppress hash support, it should include __hash__ = None in the class definition. A class which defines its own __hash__() that explicitly raises a TypeError would be incorrectly identified as hashable by an isinstance(obj, collections.abc.Hashable) call.

By default, the __hash__() values of str and bytes objects are “salted” with an unpredictable random value. Although they remain constant within an individual Python process, they are not predictable between repeated invocations of Python.

This is intended to provide protection against a denial-of-service caused by carefully chosen inputs that exploit the worst case performance of a dict insertion, O(n 2 ) complexity. See http://www.ocert.org/advisories/ocert-2011-003.html for details.

Changing hash values affects the iteration order of sets. Python has never made guarantees about this ordering (and it typically varies between 32-bit and 64-bit builds).

Changed in version 3.3: Hash randomization is enabled by default.

Called to implement truth value testing and the built-in operation bool() ; should return False or True . When this method is not defined, __len__() is called, if it is defined, and the object is considered true if its result is nonzero. If a class defines neither __len__() nor __bool__() , all its instances are considered true.

3.3.2. Customizing attribute access¶

The following methods can be defined to customize the meaning of attribute access (use of, assignment to, or deletion of x.name ) for class instances.

object. __getattr__ ( self , name ) ¶

Called when the default attribute access fails with an AttributeError (either __getattribute__() raises an AttributeError because name is not an instance attribute or an attribute in the class tree for self ; or __get__() of a name property raises AttributeError ). This method should either return the (computed) attribute value or raise an AttributeError exception.

Note that if the attribute is found through the normal mechanism, __getattr__() is not called. (This is an intentional asymmetry between __getattr__() and __setattr__() .) This is done both for efficiency reasons and because otherwise __getattr__() would have no way to access other attributes of the instance. Note that at least for instance variables, you can fake total control by not inserting any values in the instance attribute dictionary (but instead inserting them in another object). See the __getattribute__() method below for a way to actually get total control over attribute access.

object. __getattribute__ ( self , name ) ¶

Called unconditionally to implement attribute accesses for instances of the class. If the class also defines __getattr__() , the latter will not be called unless __getattribute__() either calls it explicitly or raises an AttributeError . This method should return the (computed) attribute value or raise an AttributeError exception. In order to avoid infinite recursion in this method, its implementation should always call the base class method with the same name to access any attributes it needs, for example, object.__getattribute__(self, name) .

This method may still be bypassed when looking up special methods as the result of implicit invocation via language syntax or built-in functions. See Special method lookup .

For certain sensitive attribute accesses, raises an auditing event object.__getattr__ with arguments obj and name .

object. __setattr__ ( self , name , value ) ¶

Called when an attribute assignment is attempted. This is called instead of the normal mechanism (i.e. store the value in the instance dictionary). name is the attribute name, value is the value to be assigned to it.

If __setattr__() wants to assign to an instance attribute, it should call the base class method with the same name, for example, object.__setattr__(self, name, value) .

For certain sensitive attribute assignments, raises an auditing event object.__setattr__ with arguments obj , name , value .

object. __delattr__ ( self , name ) ¶

Like __setattr__() but for attribute deletion instead of assignment. This should only be implemented if del obj.name is meaningful for the object.

For certain sensitive attribute deletions, raises an auditing event object.__delattr__ with arguments obj and name .

object. __dir__ ( self ) ¶

Called when dir() is called on the object. A sequence must be returned. dir() converts the returned sequence to a list and sorts it. Customizing module attribute access¶

Special names __getattr__ and __dir__ can be also used to customize access to module attributes. The __getattr__ function at the module level should accept one argument which is the name of an attribute and return the computed value or raise an AttributeError . If an attribute is not found on a module object through the normal lookup, i.e. object.__getattribute__() , then __getattr__ is searched in the module __dict__ before raising an AttributeError . If found, it is called with the attribute name and the result is returned.

The __dir__ function should accept no arguments, and return a sequence of strings that represents the names accessible on module. If present, this function overrides the standard dir() search on a module.

For a more fine grained customization of the module behavior (setting attributes, properties, etc.), one can set the __class__ attribute of a module object to a subclass of types.ModuleType . For example:

Defining module __getattr__ and setting module __class__ only affect lookups made using the attribute access syntax – directly accessing the module globals (whether by code within the module, or via a reference to the module’s globals dictionary) is unaffected.

Changed in version 3.5: __class__ module attribute is now writable.

New in version 3.7: __getattr__ and __dir__ module attributes.

PEP 562 — Module __getattr__ and __dir__

Describes the __getattr__ and __dir__ functions on modules. Implementing Descriptors¶

The following methods only apply when an instance of the class containing the method (a so-called descriptor class) appears in an owner class (the descriptor must be in either the owner’s class dictionary or in the class dictionary for one of its parents). In the examples below, “the attribute” refers to the attribute whose name is the key of the property in the owner class’ __dict__ .

object. __get__ ( self , instance , owner = None ) ¶

Called to get the attribute of the owner class (class attribute access) or of an instance of that class (instance attribute access). The optional owner argument is the owner class, while instance is the instance that the attribute was accessed through, or None when the attribute is accessed through the owner.

This method should return the computed attribute value or raise an AttributeError exception.

PEP 252 specifies that __get__() is callable with one or two arguments. Python’s own built-in descriptors support this specification; however, it is likely that some third-party tools have descriptors that require both arguments. Python’s own __getattribute__() implementation always passes in both arguments whether they are required or not.

object. __set__ ( self , instance , value ) ¶

Called to set the attribute on an instance instance of the owner class to a new value, value.

Note, adding __set__() or __delete__() changes the kind of descriptor to a “data descriptor”. See Invoking Descriptors for more details.

object. __delete__ ( self , instance ) ¶

Called to delete the attribute on an instance instance of the owner class.

The attribute __objclass__ is interpreted by the inspect module as specifying the class where this object was defined (setting this appropriately can assist in runtime introspection of dynamic class attributes). For callables, it may indicate that an instance of the given type (or a subclass) is expected or required as the first positional argument (for example, CPython sets this attribute for unbound methods that are implemented in C). Invoking Descriptors¶

In general, a descriptor is an object attribute with “binding behavior”, one whose attribute access has been overridden by methods in the descriptor protocol: __get__() , __set__() , and __delete__() . If any of those methods are defined for an object, it is said to be a descriptor.

The default behavior for attribute access is to get, set, or delete the attribute from an object’s dictionary. For instance, a.x has a lookup chain starting with a.__dict__[‘x’] , then type(a).__dict__[‘x’] , and continuing through the base classes of type(a) excluding metaclasses.

However, if the looked-up value is an object defining one of the descriptor methods, then Python may override the default behavior and invoke the descriptor method instead. Where this occurs in the precedence chain depends on which descriptor methods were defined and how they were called.

The starting point for descriptor invocation is a binding, a.x . How the arguments are assembled depends on a :

The simplest and least common call is when user code directly invokes a descriptor method: x.__get__(a) .

If binding to an object instance, a.x is transformed into the call: type(a).__dict__[‘x’].__get__(a, type(a)) .

If binding to a class, A.x is transformed into the call: A.__dict__[‘x’].__get__(None, A) .

If a is an instance of super , then the binding super(B, obj).m() searches obj.__class__.__mro__ for the base class A immediately following B and then invokes the descriptor with the call: A.__dict__[‘m’].__get__(obj, obj.__class__) .

For instance bindings, the precedence of descriptor invocation depends on which descriptor methods are defined. A descriptor can define any combination of __get__() , __set__() and __delete__() . If it does not define __get__() , then accessing the attribute will return the descriptor object itself unless there is a value in the object’s instance dictionary. If the descriptor defines __set__() and/or __delete__() , it is a data descriptor; if it defines neither, it is a non-data descriptor. Normally, data descriptors define both __get__() and __set__() , while non-data descriptors have just the __get__() method. Data descriptors with __get__() and __set__() (and/or __delete__() ) defined always override a redefinition in an instance dictionary. In contrast, non-data descriptors can be overridden by instances.

Python methods (including those decorated with @staticmethod and @classmethod ) are implemented as non-data descriptors. Accordingly, instances can redefine and override methods. This allows individual instances to acquire behaviors that differ from other instances of the same class.

The property() function is implemented as a data descriptor. Accordingly, instances cannot override the behavior of a property. __slots__¶

__slots__ allow us to explicitly declare data members (like properties) and deny the creation of __dict__ and __weakref__ (unless explicitly declared in __slots__ or available in a parent.)

The space saved over using __dict__ can be significant. Attribute lookup speed can be significantly improved as well.

This class variable can be assigned a string, iterable, or sequence of strings with variable names used by instances. __slots__ reserves space for the declared variables and prevents the automatic creation of __dict__ and __weakref__ for each instance. Notes on using __slots__

When inheriting from a class without __slots__, the __dict__ and __weakref__ attribute of the instances will always be accessible.

Without a __dict__ variable, instances cannot be assigned new variables not listed in the __slots__ definition. Attempts to assign to an unlisted variable name raises AttributeError . If dynamic assignment of new variables is desired, then add ‘__dict__’ to the sequence of strings in the __slots__ declaration.

Without a __weakref__ variable for each instance, classes defining __slots__ do not support weak references to its instances. If weak reference support is needed, then add ‘__weakref__’ to the sequence of strings in the __slots__ declaration.

__slots__ are implemented at the class level by creating descriptors for each variable name. As a result, class attributes cannot be used to set default values for instance variables defined by __slots__; otherwise, the class attribute would overwrite the descriptor assignment.

The action of a __slots__ declaration is not limited to the class where it is defined. __slots__ declared in parents are available in child classes. However, child subclasses will get a __dict__ and __weakref__ unless they also define __slots__ (which should only contain names of any additional slots).

If a class defines a slot also defined in a base class, the instance variable defined by the base class slot is inaccessible (except by retrieving its descriptor directly from the base class). This renders the meaning of the program undefined. In the future, a check may be added to prevent this.

Nonempty __slots__ does not work for classes derived from “variable-length” built-in types such as int , bytes and tuple .

Any non-string iterable may be assigned to __slots__.

If a dictionary is used to assign __slots__, the dictionary keys will be used as the slot names. The values of the dictionary can be used to provide per-attribute docstrings that will be recognised by inspect.getdoc() and displayed in the output of help() .

__class__ assignment works only if both classes have the same __slots__.

Multiple inheritance with multiple slotted parent classes can be used, but only one parent is allowed to have attributes created by slots (the other bases must have empty slot layouts) — violations raise TypeError .

If an iterator is used for __slots__ then a descriptor is created for each of the iterator’s values. However, the __slots__ attribute will be an empty iterator.

3.3.3. Customizing class creation¶

Whenever a class inherits from another class, __init_subclass__() is called on the parent class. This way, it is possible to write classes which change the behavior of subclasses. This is closely related to class decorators, but where class decorators only affect the specific class they’re applied to, __init_subclass__ solely applies to future subclasses of the class defining the method.

classmethod object. __init_subclass__ ( cls ) ¶

This method is called whenever the containing class is subclassed. cls is then the new subclass. If defined as a normal instance method, this method is implicitly converted to a class method.

Keyword arguments which are given to a new class are passed to the parent’s class __init_subclass__ . For compatibility with other classes using __init_subclass__ , one should take out the needed keyword arguments and pass the others over to the base class, as in:

The default implementation object.__init_subclass__ does nothing, but raises an error if it is called with any arguments.

The metaclass hint metaclass is consumed by the rest of the type machinery, and is never passed to __init_subclass__ implementations. The actual metaclass (rather than the explicit hint) can be accessed as type(cls) .

New in version 3.6.

When a class is created, type.__new__() scans the class variables and makes callbacks to those with a __set_name__() hook.

object. __set_name__ ( self , owner , name ) ¶

Automatically called at the time the owning class owner is created. The object has been assigned to name in that class:

If the class variable is assigned after the class is created, __set_name__() will not be called automatically. If needed, __set_name__() can be called directly:

New in version 3.6. Metaclasses¶

By default, classes are constructed using type() . The class body is executed in a new namespace and the class name is bound locally to the result of type(name, bases, namespace) .

The class creation process can be customized by passing the metaclass keyword argument in the class definition line, or by inheriting from an existing class that included such an argument. In the following example, both MyClass and MySubclass are instances of Meta :

Any other keyword arguments that are specified in the class definition are passed through to all metaclass operations described below.

When a class definition is executed, the following steps occur:

MRO entries are resolved;

the appropriate metaclass is determined;

the class namespace is prepared;

the class body is executed;

the class object is created. Resolving MRO entries¶

If a base that appears in class definition is not an instance of type , then an __mro_entries__ method is searched on it. If found, it is called with the original bases tuple. This method must return a tuple of classes that will be used instead of this base. The tuple may be empty, in such case the original base is ignored.

PEP 560 — Core support for typing module and generic types Determining the appropriate metaclass¶

The appropriate metaclass for a class definition is determined as follows:

if no bases and no explicit metaclass are given, then type() is used;

if an explicit metaclass is given and it is not an instance of type() , then it is used directly as the metaclass;

if an instance of type() is given as the explicit metaclass, or bases are defined, then the most derived metaclass is used.

The most derived metaclass is selected from the explicitly specified metaclass (if any) and the metaclasses (i.e. type(cls) ) of all specified base classes. The most derived metaclass is one which is a subtype of all of these candidate metaclasses. If none of the candidate metaclasses meets that criterion, then the class definition will fail with TypeError . Preparing the class namespace¶

Once the appropriate metaclass has been identified, then the class namespace is prepared. If the metaclass has a __prepare__ attribute, it is called as namespace = metaclass.__prepare__(name, bases, **kwds) (where the additional keyword arguments, if any, come from the class definition). The __prepare__ method should be implemented as a classmethod . The namespace returned by __prepare__ is passed in to __new__ , but when the final class object is created the namespace is copied into a new dict .

If the metaclass has no __prepare__ attribute, then the class namespace is initialised as an empty ordered mapping.

Introduced the __prepare__ namespace hook Executing the class body¶

The class body is executed (approximately) as exec(body, globals(), namespace) . The key difference from a normal call to exec() is that lexical scoping allows the class body (including any methods) to reference names from the current and outer scopes when the class definition occurs inside a function.

However, even when the class definition occurs inside the function, methods defined inside the class still cannot see names defined at the class scope. Class variables must be accessed through the first parameter of instance or class methods, or through the implicit lexically scoped __class__ reference described in the next section. Creating the class object¶

Once the class namespace has been populated by executing the class body, the class object is created by calling metaclass(name, bases, namespace, **kwds) (the additional keywords passed here are the same as those passed to __prepare__ ).

This class object is the one that will be referenced by the zero-argument form of super() . __class__ is an implicit closure reference created by the compiler if any methods in a class body refer to either __class__ or super . This allows the zero argument form of super() to correctly identify the class being defined based on lexical scoping, while the class or instance that was used to make the current call is identified based on the first argument passed to the method.

CPython implementation detail: In CPython 3.6 and later, the __class__ cell is passed to the metaclass as a __classcell__ entry in the class namespace. If present, this must be propagated up to the type.__new__ call in order for the class to be initialised correctly. Failing to do so will result in a RuntimeError in Python 3.8.

When using the default metaclass type , or any metaclass that ultimately calls type.__new__ , the following additional customization steps are invoked after creating the class object:

The type.__new__ method collects all of the attributes in the class namespace that define a __set_name__() method;

Those __set_name__ methods are called with the class being defined and the assigned name of that particular attribute;

The __init_subclass__() hook is called on the immediate parent of the new class in its method resolution order.

After the class object is created, it is passed to the class decorators included in the class definition (if any) and the resulting object is bound in the local namespace as the defined class.

When a new class is created by type.__new__ , the object provided as the namespace parameter is copied to a new ordered mapping and the original object is discarded. The new copy is wrapped in a read-only proxy, which becomes the __dict__ attribute of the class object.

Describes the implicit __class__ closure reference Uses for metaclasses¶

The potential uses for metaclasses are boundless. Some ideas that have been explored include enum, logging, interface checking, automatic delegation, automatic property creation, proxies, frameworks, and automatic resource locking/synchronization.

3.3.4. Customizing instance and subclass checks¶

The following methods are used to override the default behavior of the isinstance() and issubclass() built-in functions.

In particular, the metaclass abc.ABCMeta implements these methods in order to allow the addition of Abstract Base Classes (ABCs) as “virtual base classes” to any class or type (including built-in types), including other ABCs.

class. __instancecheck__ ( self , instance ) ¶

Return true if instance should be considered a (direct or indirect) instance of class. If defined, called to implement isinstance(instance, class) .

class. __subclasscheck__ ( self , subclass ) ¶

Return true if subclass should be considered a (direct or indirect) subclass of class. If defined, called to implement issubclass(subclass, class) .

Note that these methods are looked up on the type (metaclass) of a class. They cannot be defined as class methods in the actual class. This is consistent with the lookup of special methods that are called on instances, only in this case the instance is itself a class.

PEP 3119 — Introducing Abstract Base Classes

Includes the specification for customizing isinstance() and issubclass() behavior through __instancecheck__() and __subclasscheck__() , with motivation for this functionality in the context of adding Abstract Base Classes (see the abc module) to the language.

3.3.5. Emulating generic types¶

When using type annotations , it is often useful to parameterize a generic type using Python’s square-brackets notation. For example, the annotation list[int] might be used to signify a list in which all the elements are of type int .

Introducing Python’s framework for type annotations

Documentation for objects representing parameterized generic classes

Documentation on how to implement generic classes that can be parameterized at runtime and understood by static type-checkers.

A class can generally only be parameterized if it defines the special class method __class_getitem__() .

classmethod object. __class_getitem__ ( cls , key ) ¶

Return an object representing the specialization of a generic class by type arguments found in key.

When defined on a class, __class_getitem__() is automatically a class method. As such, there is no need for it to be decorated with @classmethod when it is defined. The purpose of __class_getitem__

The purpose of __class_getitem__() is to allow runtime parameterization of standard-library generic classes in order to more easily apply type hints to these classes.

To implement custom generic classes that can be parameterized at runtime and understood by static type-checkers, users should either inherit from a standard library class that already implements __class_getitem__() , or inherit from typing.Generic , which has its own implementation of __class_getitem__() .

Custom implementations of __class_getitem__() on classes defined outside of the standard library may not be understood by third-party type-checkers such as mypy. Using __class_getitem__() on any class for purposes other than type hinting is discouraged. __class_getitem__ versus __getitem__

Usually, the subscription of an object using square brackets will call the __getitem__() instance method defined on the object’s class. However, if the object being subscribed is itself a class, the class method __class_getitem__() may be called instead. __class_getitem__() should return a GenericAlias object if it is properly defined.

Presented with the expression obj[x] , the Python interpreter follows something like the following process to decide whether __getitem__() or __class_getitem__() should be called:

In Python, all classes are themselves instances of other classes. The class of a class is known as that class’s metaclass , and most classes have the type class as their metaclass. type does not define __getitem__() , meaning that expressions such as list[int] , dict[str, float] and tuple[str, bytes] all result in __class_getitem__() being called:

However, if a class has a custom metaclass that defines __getitem__() , subscribing the class may result in different behaviour. An example of this can be found in the enum module:

PEP 560 — Core Support for typing module and generic types

Introducing __class_getitem__() , and outlining when a subscription results in __class_getitem__() being called instead of __getitem__()

3.3.6. Emulating callable objects¶

Called when the instance is “called” as a function; if this method is defined, x(arg1, arg2, . ) roughly translates to type(x).__call__(x, arg1, . ) .

3.3.7. Emulating container types¶

The following methods can be defined to implement container objects. Containers usually are sequences (such as lists or tuples ) or mappings (like dictionaries ), but can represent other containers as well. The first set of methods is used either to emulate a sequence or to emulate a mapping; the difference is that for a sequence, the allowable keys should be the integers k for which 0 <= k < N where N is the length of the sequence, or slice objects, which define a range of items. It is also recommended that mappings provide the methods keys() , values() , items() , get() , clear() , setdefault() , pop() , popitem() , copy() , and update() behaving similar to those for Python’s standard dictionary objects. The collections.abc module provides a MutableMapping abstract base class to help create those methods from a base set of __getitem__() , __setitem__() , __delitem__() , and keys() . Mutable sequences should provide methods append() , count() , index() , extend() , insert() , pop() , remove() , reverse() and sort() , like Python standard list objects. Finally, sequence types should implement addition (meaning concatenation) and multiplication (meaning repetition) by defining the methods __add__() , __radd__() , __iadd__() , __mul__() , __rmul__() and __imul__() described below; they should not define other numerical operators. It is recommended that both mappings and sequences implement the __contains__() method to allow efficient use of the in operator; for mappings, in should search the mapping’s keys; for sequences, it should search through the values. It is further recommended that both mappings and sequences implement the __iter__() method to allow efficient iteration through the container; for mappings, __iter__() should iterate through the object’s keys; for sequences, it should iterate through the values.

object. __len__ ( self ) ¶

Called to implement the built-in function len() . Should return the length of the object, an integer >= 0. Also, an object that doesn’t define a __bool__() method and whose __len__() method returns zero is considered to be false in a Boolean context.

CPython implementation detail: In CPython, the length is required to be at most sys.maxsize . If the length is larger than sys.maxsize some features (such as len() ) may raise OverflowError . To prevent raising OverflowError by truth value testing, an object must define a __bool__() method.

Called to implement operator.length_hint() . Should return an estimated length for the object (which may be greater or less than the actual length). The length must be an integer >= 0. The return value may also be NotImplemented , which is treated the same as if the __length_hint__ method didn’t exist at all. This method is purely an optimization and is never required for correctness.

New in version 3.4.

Slicing is done exclusively with the following three methods. A call like

Python. Урок 3. Типы и модель данных

В данном уроке разберем как Python работает с переменными и определим какие типы данных можно использовать в рамках этого языка. Подробно рассмотрим модель данных Python, а также механизмы создания и изменения значения переменных.

Немного о типизации языков программирования

Если достаточно формально подходить к вопросу о типизации языка Python, то можно сказать, что он относится к языкам с неявной сильной динамической типизацией.

Неявная типизация означает, что при объявлении переменной вам не нужно указывать её тип, при явной – это делать необходимо. В качестве примера языков с явной типизацией можно привести Java, C++. Вот как будет выглядеть объявление целочисленной переменной в Java и Python.

Также языки бывают с динамической и статической типизацией. В первом случае тип переменной определяется непосредственно при выполнении программы, во втором – на этапе компиляции (о компиляции и интерпретации кратко рассказано в уроке 2). Как уже было сказано Python – это динамически типизированный язык, такие языки как С, C#, Java – статически типизированные.

Сильная типизация не позволяет производить операции в выражениях с данными различных типов, слабая – позволяет. В языках с сильной типизацией вы не можете складывать например строки и числа, нужно все приводить к одному типу. К первой группе можно отнести Python, Java, ко второй – С и С++.

За более подробным разъяснением данного вопроса советуем обратиться к статье “Ликбез по типизации в языках программирования” .

Типы данных в Python

В Python типы данных можно разделить на встроенные в интерпретатор (built-in) и не встроенные, которые можно использовать при импортировании соответствующих модулей.

К основным встроенным типам относятся:

  1. None (неопределенное значение переменной)
  2. Логические переменные (Boolean Type)
  3. Числа (Numeric Type)
    1. int – целое число
    2. float – число с плавающей точкой
    3. complex – комплексное число
    1. list – список
    2. tuple – кортеж
    3. range – диапазон
    1. str
    1. bytes – байты
    2. bytearray – массивы байт
    3. memoryview – специальные объекты для доступа к внутренним данным объекта через protocol buffer
    1. set – множество
    2. frozenset – неизменяемое множество
    1. dict – словарь

    Модель данных

    Рассмотрим как создаются объекты в памяти, их устройство, процесс объявления новых переменных и работу операции присваивания.

    Для того, чтобы объявить и сразу инициализировать переменную необходимо написать её имя, потом поставить знак равенства и значение, с которым эта переменная будет создана. Например строка:

    объявляет переменную b и присваивает ей значение 5.

    Целочисленное значение 5 в рамках языка Python по сути своей является объектом. Объект, в данном случае – это абстракция для представления данных, данные – это числа, списки, строки и т.п. При этом, под данными следует понимать как непосредственно сами объекты, так и отношения между ними (об этом чуть позже). Каждый объект имеет три атрибута – это идентификатор, значение и тип. Идентификатор – это уникальный признак объекта, позволяющий отличать объекты друг от друга, а значение – непосредственно информация, хранящаяся в памяти, которой управляет интерпретатор.

    При инициализации переменной, на уровне интерпретатора, происходит следующее:

    • создается целочисленный объект 5 (можно представить, что в этот момент создается ячейка и 5 кладется в эту ячейку);
    • данный объект имеет некоторый идентификатор, значение: 5, и тип: целое число;
    • посредством оператора “=” создается ссылка между переменной b и целочисленным объектом 5 (переменная b ссылается на объект 5).

    Имя переменной не должно совпадать с ключевыми словами интерпретатора Python. Список ключевых слов можно найти здесь . Также его можно получить непосредственно в программе, для этого нужно подключить модуль keyword и воспользоваться командой keyword.kwlist.

    Проверить является или нет идентификатор ключевым словом можно так:

    Для того, чтобы посмотреть на объект с каким идентификатором ссылается данная переменная, можно использовать функцию id().

    Как видно из примера, идентификатор – это некоторое целочисленное значение, посредством которого уникально адресуется объект. Изначально переменная a ссылается на объект 4 с идентификатором 1829984576, переменная b – на объект с id = 1829984592. После выполнения операции присваивания a = b, переменная a стала ссылаться на тот же объект, что и b.

    Python data model work

    Тип переменной можно определить с помощью функции type(). Пример использования приведен ниже.

    Изменяемые и неизменяемые типы данных

    В Python существуют изменяемые и неизменяемые типы.

    К неизменяемым (immutable) типам относятся: целые числа (int), числа с плавающей точкой (float), комплексные числа (complex), логические переменные (bool), кортежи (tuple), строки (str) и неизменяемые множества (frozen set).

    К изменяемым (mutable) типам относятся: списки (list), множества (set), словари (dict).

    Как уже было сказано ранее, при создании переменной, вначале создается объект, который имеет уникальный идентификатор, тип и значение, после этого переменная может ссылаться на созданный объект.

    Неизменяемость типа данных означает, что созданный объект больше не изменяется. Например, если мы объявим переменную k = 15, то будет создан объект со значением 15, типа int и идентификатором, который можно узнать с помощью функции id().

    Объект с id = 1672501744 будет иметь значение 15 и изменить его уже нельзя.

    Если тип данных изменяемый, то можно менять значение объекта. Например, создадим список [1, 2], а потом заменим второй элемент на 3.

    Как видно, объект на который ссылается переменная a, был изменен. Это можно проиллюстрировать следующим рисунком.

    Пример изменяемого объекта

    В рассмотренном случае, в качестве данных списка, выступают не объекты, а отношения между объектами. Т.е. в переменной a хранятся ссылки на объекты содержащие числа 1 и 3, а не непосредственно сами эти числа.


    Если вам интересна тема анализа данных, то мы рекомендуем ознакомиться с библиотекой Pandas. На нашем сайте вы можете найти вводные уроки по этой теме. Все уроки по библиотеке Pandas собраны в книге “Pandas. Работа с данными”.
    Книга: Pandas. Работа с данными

    Python. Урок 3. Типы и модель данных : 12 комментариев

    У Вас в коде
    >>> print “Python keywords: “, keyword.kwlist
    не хватает круглых скобок:
    >>> print(“Python keywords: “, keyword.kwlist)

    создаем матрицу а=((0)*10)*10 делаем а(0)(0)=1, печатаем матрицу и видим что меняется первый элемент в каждой строке(не нашел квадратных скобок на телефоне, сорян). как это объяснить? что здесь объект а что ссылка?

    Первый рисунок неверный, обведено b=4, а надо b=5

    Немного не понял, а ссылается теперь на 3 но id одинаково, так почему же тогда это мутируемый вид данных?

    Мутируемый – потому, что вы меняете содержимое, а переменная как ссылалась на определенную область памяти, помеченную так и продолжает на нее ссылаться. С числами (int, float) это не так, можете провести эксперимент!

    Спасибо, Вам! Оставайтесь с нами, будет еще много интересного!

    “Объект с будет иметь значение 15 и изменить его уже нельзя.”
    Не совсем ясно что вы подразумеваете под невозможностью изменить обьект с данным id. Если, к примеру, присвоить переменной k = 7, то, как я понимаю, будет создан новый обьект с новым id, ссылающийся на 7, но что тогда будет с прежним обьектом с Будет ли, как в c#, активирован в определенный момент времени сборщик мусора так как на данный обьект нет ссылок или что-то другое?

    Все круто и ясна я все этим коди попробовал они работал
    спасибо вам я очень рад

    Аннотации типов в Python

    Такая система типов — это очень удачный компромисс между простотой разработки и надежностью написанных программ, но она не лишена недостатков.

    Например, объявления переменных с типами в языках со статической типизацией, кроме своего основного назначения — инструкций компилятору или интерпретатору, ещё и помогают программисту лучше понимать написанный код, служат своеобразной документацией. Динамическая типизация не в состоянии этого дать.

    Раньше, когда на Python писали в основном небольшие скрипты, это не было такой уж острой проблемой, потому что всю программу за разумный промежуток времени можно было охватить взглядом и понять. В последнее время язык стал значительно популярнее.

    По данным исследований StackOverflow за 2020, 2019, 2018, 2017, 2016, 2015 (там же можно посмотреть результаты за 2014 и 2013) годы, Python с каждым годом растёт в популярности.

    Сегодня на Python написано много сложных систем из сотен файлов и сотен тысяч строк кода. В таких обстоятельствах документирующее свойство системы типов становится очень полезным. В достаточно крупной кодовой базе при отсутствии информации о типах очень сложно угадать (а только гадать и остаётся), какие же именно объекты циркулируют по программе.

    Кроме того, даже если код без информации о типах может быть и вполне понятен человеку, например, благодаря удачно выбранным именам, то для автоматики — это в любом случае абсолютно непроницаемый черный непрозрачный ящик. В такой ситуации очень сложно, не выполняя код (мы же говорим про статический анализ), понять как он будет вести себя в ран-тайме. Аннотации типов позволяют IDE, линтерам и тайп-чекерам лучше понимать код программы, что дает возможность рано отлавливать достаточно хитрые ошибки. В конечном итоге это делает написанные программы надежнее.

    По этим соображениям, в Python 3.5 появился специальный синтаксис для объявления типов параметров функций и их возвращаемых значений (PEP 484). В Python 3.6 эта возможность была расширена — стало можно объявлять типы переменных вообще в любом месте программы (PEP 526). С каждой новой версией языка эта функциональность улучшается, и писать аннотации типов становится всё проще, удобнее и естественнее, а экосистема вокруг типизированного Python развивается семимильными шагами.

    Нужно отметить, что тайп-аннотации — это именно возможность, а не обязанность. У программиста есть выбор — добавлять информацию о типах или нет. Таким образом Python пытается усидеть на двух стульях — остаться языком с динамической типизацией и дать возможность для статического анализа написанных программ. Привнести в хаос немного порядка, так сказать. И, по-моему, у Python это неплохо получается.

    Как это работает?

    Программист при написании кода расставляет информацию о типах переменных, параметров и возвращаемых значений функций. Это никак не влияет на выполнение программы. Python сам по себе никак не использует эту информацию в ран-тайме, он лишь перекладывает её в специальные атрибуты функций или переменных, делая доступной для сторонних утилит. То есть, если указано, что функция принимает строки, то это никак не помешает вызвать её с целыми числами или списками — в зависимости от тела функции, она может отработать, а может завершиться ошибкой, но сама возможность вызова с любыми типами аргументов никак не ограничивается.

    Зачем же тогда писать тайп-аннотации?

    • документация для разработчиков;
    • сторонние утилиты и библиотеки могут использовать эту информацию по своему усмотрению, например, выполняя проверки типов или приводя данные к нужному типу.

    Первый пункт достаточно очевидный, а про второй мы поговорим чуть позже в разделе про тайп-чекеры.

    Простые типы

    Вот так, например, можно тайп-аннотировать простую функцию:

    Типы параметров, принимаемых функцией, записываются после имени параметра через знак двоеточия, но перед значением по умолчанию, если оно присутствует. Возвращаемое значение функции записывается после знака “стрелки”.

    Теперь читатель просто взглянув на сигнатуру функции может понять, что функция принимает строку и возвращает строку. Наверное, если передать в неё другой тип, то она не сможет корректно отработать.

    Точно так же можно использовать для тайп-аннотаций и любые другие базовые (примитивные, не-контейнерные) типы в Python: int , float , bool , str , bytes , None и вообще практически что угодно. Чуть позже посмотрим, как типизировать контейнерные типы данных, такие как списки, кортежи, словари и множества.

    Вот так можно зааннотировать функцию, которая принимает два числа с плавающей точкой и возвращает число с плавающей точкой:

    А вот так функцию, которая принимает строку и булевый аргумент, но ничего не возвращает:

    Вот так можно аннотировать любые переменные в любом месте кода (Python 3.6+):

    Если мы создадим свой класс, то его тоже можно использовать для аннотаций:

    Контейнерные типы и дженерики

    Перейдем к более сложным типам, таким как списки, кортежи, словари и множества. Можно аннотировать в лоб, используя сами имена классов:

    Это не слишком информативно, потому что кроме самого типа контейнера было бы ещё полезно знать, какие данные он в себе содержит. Что такое person_info ? Кортеж чего?

    В Python до версии 3.9 для этого придётся использовать отдельные классы из модуля typing , потому что стандартные классы не представляют такой функциональности. Делается это при помощи квадратных скобок, как будто мы извлекаем что-то по индексу:

    Начиная с Python 3.9 можно использовать стандартные классы в точно таких же целях, ничего ниоткуда не импортируя:

    Согласитесь, так намного понятнее. Сразу видно, какой тип данных лежит внутри контейнера. Такие типы называются обобщёнными (generic types).

    Кстати, в типизации можно яснее увидеть разницу между тем как должны использоваться списки и кортежи ( list vs. tuple ).

    • Списки содержат однородные данные — они все должны быть одного типа, иначе с таким списком будет тяжеловато работать.
    • Кортеж, напротив, может содержать разнородные данные, которые в зависимости от позиции могут иметь тот или иной тип.
    • Список нужно использовать, когда длина заранее неизвестна либо она переменна, например, список пользователей.
    • Кортеж нужно использовать, когда длина данных известна заранее и строго фиксирована, например, как в записи из таблицы в СУБД.

    Получается, кортеж — это не просто неизменяемый брат-близнец списка.

    Если сильно хочется использовать кортеж как просто неизменяемую последовательность однородных данных, то можно зааннотировать его вот так, используя . (это специальный объект Ellipsis , записывается как многоточие, при чтении исходников вслух в этом месте нужно делать драматическую паузу):

    Составные типы

    Часто случаются ситуации, когда нужно объединить несколько типов, например, для того, чтобы указать, что функция может принимать и строки, и числа. Этого можно достичь при помощи дженерик-типа Union из модуля typing :

    Также очень часто возникает ситуация, когда возможно либо значение определенного типа, либо None . Это настолько частая ситуация, что для этого даже сделали отдельный дженерик-тип Optional :

    Также может возникнуть ситуация, когда не получается указать какой-либо конкретный тип, потому что, например, функция может принимать на вход абсолютно что угодно. Для этих случаев тоже есть специальный объект typing.Any :

    Можно считать, что Any неявно подставляется везде, где не указан более конкретный тип. Очень соблазнительно везде вставлять этот тип, но настоятельно рекомендую использовать его только в крайних случаях, потому что чрезмерное его использование сводит пользу от типизации на нет.

    Вообще советую заглянуть в документацию модуля typing , там есть много интересных классов на все случаи жизни.

    Проверка типов

    Допустим, что тайп-аннотации написаны. Как начать получать от этого пользу?

    В экосистеме Python есть несколько конкурирующих между собой тайп-чекеров, например, mypy , pyre , pytype , pyright . Самым популярным среди них является mypy , наверное, потому что одним из ключевых его разработчиков является сам Гвидо ван Россум. Давайте на mypy и остановимся.

    Установим mypy в проект. Внутри виртуального окружения проекта нужно выполнить:

    Для pipenv и poetry соответственно вот так:

    Давайте напишем самый тривиальный пример программы с ошибкой:

    При выполнении, очевидно, программа завершится ошибкой:

    Давайте посмотрим, сможет ли тайп-чекер обнаружить эту проблему:

    Отлично! Не исполняя программу, mypy смог понять, что в ней присутствует ошибка. Давайте запрячем эту же самую ошибку чуть глубже, используя функцию:

    Проверим типы в этой программе:

    Тайп-чекер пропустил правильный вызов функции, но обнаружил вызов функции с ошибкой.


    Тайп-аннотации — это настолько круто и удобно, что, честно говоря, я уже плохо представляю, как раньше (до Python 3.5) без этого люди вообще программировали. Для меня это самый веский аргумент в пользу Python 3 и против Python 2. Это незаменимый инструмент при разработке насколько-нибудь крупной программы.

    Обязательно нужно интегрировать тайп-чекинг в свой редактор/IDE, чтобы ошибки подсвечивались ещё на этапе написания кода. Можно интегрировать тайп-чекинг в Git-хуки и CI.

    На странице «Awesome Python Typing» можно найти ещё много полезных инструментов, которые пользуются тайп-аннотациями.

    Если понравилась статья, то подпишитесь на уведомления о новых постах в блоге, чтобы ничего не пропустить!

Ссылка на основную публикацию