Как строить кусочно заданную функцию

Как строить кусочно заданную функцию

Лекция по теме «Как строить график кусочной функции»

Такая запись обозначает, что значение функции вычисляется по формуле √x, когда x больше или равен нулю. Когда же x меньше нуля, то значение функции определяется по формуле –x 2 . Например, если x = 4, то f(x) = 2, т. к. в данном случае используется формула извлечения корня. Если же x = –4, то f(x) = –16, т. к. в этом случае используется формула –x 2 (сначала возводим в квадрат, потом учитываем минус).

Чтобы построить график такой кусочной функции, сначала строятся графики двух разных функций не зависимо от значения x (т. е. на всей числовой прямой аргумента). После этого от полученных графиков берутся только те части, которые принадлежат соответствующим диапазонам x. Эти части графиков объединяются в один. Понятно, что в простых случаях чертить можно сразу части графиков, опустив предварительную прорисовку их «полных» вариантов.

Для приведенного выше примера для формулы y = √x получим такой график:

hello_html_m7c6cb07.png

Здесь x в принципе не может принимать отрицательных значений (т. е. подкоренное выражение в данном случае не может быть отрицательным). Поэтому в график кусочной функции уйдет весь график уравнения y = √x.

Построим график функции f(x) = –x 2 . Получим перевернутую параболу:

hello_html_5b8e779b.png

В данном случае в кусочную функции мы возьмем только ту часть параболы, для которой x принадлежит промежутку (–∞; 0). В результате получится такой график кусочной функции:

hello_html_39993fde.png

Рассмотрим другой пример:

Графиком функции f(x) = (0.6x – 0.5) 2 – 1.7 будет видоизмененная парабола. Графиком f(x) = 0.5x + 1 является прямая:

hello_html_52493c8b.png

В кусочной функции x может принимать значения в ограниченных промежутках: от 1 до 5 и от –5 до 0. Ее график будет состоять из двух отдельных частей. Одну часть берем на промежутке [1; 5] от параболы, другую — на промежутке [–5; 0] от прямой:

Урок-мастерская по теме "Построение графика кусочной функции в табличном процессоре Excel по заданным параметрам"

Учащиеся проходят в класс. Занимают свои места. Учителя приветствуют их.

2. Актуализация знаний.

На доске записано слово “Функция”. Учитель математики просит учащихся назвать ассоциации, связанные с этим словом.

3. Подготовительная работа.

Учащимся предлагается 4 вида графиков и варианты функций. Соотнести графики функций с их алгебраической записью.

Графики и алгебраические записи размещены на маркерной доске.

y= √х
y = | х|
y = x 2

Учащимся предлагается 4 вида преобразования графиков. Необходимо объяснить, какой вид преобразования используется (данное задание учитель математики иллюстрирует, используя электронное сопровождение курса “Алгебра – 8” под редакцией А.Г.Мордковича).

4. Поиск подхода к решению задачи.

Каждый ученик получает карточку определённого цвета, на которой представлена часть того или иного графика. Учащиеся делятся на группы по цветам.

– Соедините части и скажите, что у Вас получилось? (График кусочной функции)

– Как построить график кусочной функции? Попробуйте вспомнить алгоритм.

5. Работа в группах.

Каждая группа получает конверты с заданиями. Учащиеся внутри группы сами определяют, кто и какую часть будет строить. Построив каждый кусочек функции на листе, учащийся выполняет построение на компьютере под руководством учителя информатики.

Необходимо построить таблицу значений “х” и “у”, заполнить для заданного интервала, самостоятельно выбрав шаг.

Для заполнения значений “у” необходимо правильно внести формулы в ячейку таблицы. (Памятка 2.)

Каждый ученик строит согласно своему заданию функцию и сохраняет работу на отдельном листе книги Excel, переименовав его согласно номеру задания.

Далее все части собираются на одном листе, а затем на компьютере. Если группы справились с заданием, то и на листе, и на компьютере графики одинаковы.

6. Обсуждение в мастерской.

Работы вывешиваются на доску. Учащиеся сравнивают полученный график с макетом, собранным ими в начале урока. Оценивают работы друг друга. Высказывают свои мнения.

Группа 1 получила после выполнения задания график вида:

Группа 2 получила после выполнения задания график вида:

Группа 3 получила после выполнения задания график вида:

Группа 4 получила после выполнения задания график вида:

7. Оценочно-рефлексивная деятельность.

Каждому ученику предлагается оценить свои чувства после выполнения работы. Для этого, на доске расположены 3 рисунка. Каждый ученик подходит к доске и прикрепляет к выбранному им рисунку клейкую бумагу. В конце подсчитывается количество прикреплённых бумажек к тому или иному рисунку. Обсуждается, почему выбрано то или иное настроение.

В конце урока каждому ученику вручается сертификат и выполненная им работа.

Кусочно-линейная функция

Ситуация, когда движение или другое явление можно описать одной линейной функцией, определенной на интервале $-\infty \lt t \lt +\infty$, в действительности невозможна. Хотя бы потому, что возраст Вселенной велик, но не бесконечен.

На практике в течение некоторого времени тело может двигаться, потом – покоиться, потом – опять прийти в движение, но уже с другой скоростью и в другом направлении и т.п. Как задать подобную зависимость?

Допустим, турист идет из начальной точки по прямой тропинке в течение 2 ч со скоростью 5 км/ч, затем останавливается отдохнуть на 1ч и возвращается обратно по той же тропинке со скоростью 4 км/ч. Нам нужно найти формулу для расстояния s(t) от начальной точки на протяжении всего похода.

Изобразим зависимость s(t) графически:

Первый отрезок AB легко записать: $ s_1 (t) = 5t,0 \le t \lt 2$

С отрезком BC тоже всё ясно: $s_2 (t) = 10,2 \le t \lt 3$

Осталось найти формулу для отрезка CD. Для него известен угловой коэффициент, равный скорости k = -4; знак «минус» оттого, что турист возвращается обратно. Формула имеет вид $s_3 (t) = -4t+b$. Также, нам известны координаты C(3;10).

Подставляем: $10 = -4 \cdot 3+b \Rightarrow b =22$. Осталось рассчитать момент возвращения:

$$0 = -4t_+22 \Rightarrow t_ = 22:4 = 5,5$$ (ч)

Значит, формула движения на отрезке $CD:s_3 (t) = -4t+22,3 \le t \le 5,5.$

$$s(t) = <\left\< \begin 5t,0 \le t \lt 2 \\ 10,2 \le t \lt 3 \\ -4t+22,3 \le t \le 5,5 \end \right.> $$

Важным свойством заданной функции является выполнение условий согласования:

$$ s_1 (2) = s_2 (2) = 10,s_2 (3) = s_3 (3) = 10$$

Наша функция «сшита» на концах промежуточных интервалов.

$$x f(x) = <\left\< \begin k_1 x+b_1, x_1 \le x \lt x_2 \\ k_2 x+b_2,x_2 \le x \lt x_3 \\…\\ k_n x+b_n,x_n \le x \lt x_ \end \right.>$$

называется кусочно-линейной .

При этом для функции на краях интервалов выполняются условия согласования:

Графиком кусочно-линейной функции является ломаная линия

Знак модуля в линейных функциях

$$ |x| = \left[ \begin x, x\ge0 \\ -x, x \lt 0\end \right.$$

Если в формуле для линейной функции содержится знак модуля, то после его раскрытия получается кусочно-линейная функция.

Мы заменили квадратную скобку со значением «или» на фигурную скобку со значением «и», поскольку именно смысл объединения — «и того, и другого» — вкладывается в определение кусочно-линейной функции .

Примеры

Пример 1. Представьте функцию с модулем в виде кусочно-линейной и постройте её график:

Пример 1 а)

б) $ y = 2|x|-1 = <\left\< \begin -2x-1, x \lt0 \\ 2x-1, x \ge 0 \end \right.>$

Пример 1 б)

Пример 1 г)

Пример 2*. Представьте функцию с модулем в виде кусочно-линейной и постройте её график:

Как видно из этого примера, аналитически выводить формулу для двух модулей очень нелегко.

Гораздо легче сразу построить график, если следовать следующим простым правилам преобразования.

Шаг 1. Строим y = 2x-1

Пример 2 Шаг 1

Шаг 2. Строим y = 2|x|-1 по правилу: |x| отражает часть графика для положительных $x \ge 0$ влево, зеркально относительно оси Y

Шаг 3. Строим y = |(2|x|-1)| по правилу: общий модуль отражает участок графика с отрицательными $y \lt 0$ вверх, зеркально относительно оси X

Ссылка на основную публикацию