Лекция по теме «Как строить график кусочной функции»
Такая запись обозначает, что значение функции вычисляется по формуле √x, когда x больше или равен нулю. Когда же x меньше нуля, то значение функции определяется по формуле –x 2 . Например, если x = 4, то f(x) = 2, т. к. в данном случае используется формула извлечения корня. Если же x = –4, то f(x) = –16, т. к. в этом случае используется формула –x 2 (сначала возводим в квадрат, потом учитываем минус).
Чтобы построить график такой кусочной функции, сначала строятся графики двух разных функций не зависимо от значения x (т. е. на всей числовой прямой аргумента). После этого от полученных графиков берутся только те части, которые принадлежат соответствующим диапазонам x. Эти части графиков объединяются в один. Понятно, что в простых случаях чертить можно сразу части графиков, опустив предварительную прорисовку их «полных» вариантов.
Для приведенного выше примера для формулы y = √x получим такой график:
Здесь x в принципе не может принимать отрицательных значений (т. е. подкоренное выражение в данном случае не может быть отрицательным). Поэтому в график кусочной функции уйдет весь график уравнения y = √x.
Построим график функции f(x) = –x 2 . Получим перевернутую параболу:
В данном случае в кусочную функции мы возьмем только ту часть параболы, для которой x принадлежит промежутку (–∞; 0). В результате получится такой график кусочной функции:
Рассмотрим другой пример:
Графиком функции f(x) = (0.6x – 0.5) 2 – 1.7 будет видоизмененная парабола. Графиком f(x) = 0.5x + 1 является прямая:
В кусочной функции x может принимать значения в ограниченных промежутках: от 1 до 5 и от –5 до 0. Ее график будет состоять из двух отдельных частей. Одну часть берем на промежутке [1; 5] от параболы, другую — на промежутке [–5; 0] от прямой:
Урок-мастерская по теме "Построение графика кусочной функции в табличном процессоре Excel по заданным параметрам"
Учащиеся проходят в класс. Занимают свои места. Учителя приветствуют их.
2. Актуализация знаний.
На доске записано слово “Функция”. Учитель математики просит учащихся назвать ассоциации, связанные с этим словом.
3. Подготовительная работа.
Учащимся предлагается 4 вида графиков и варианты функций. Соотнести графики функций с их алгебраической записью.
Графики и алгебраические записи размещены на маркерной доске.
y= √х | |
y = | х| | |
y = x 2 | |
Учащимся предлагается 4 вида преобразования графиков. Необходимо объяснить, какой вид преобразования используется (данное задание учитель математики иллюстрирует, используя электронное сопровождение курса “Алгебра – 8” под редакцией А.Г.Мордковича).
4. Поиск подхода к решению задачи.
Каждый ученик получает карточку определённого цвета, на которой представлена часть того или иного графика. Учащиеся делятся на группы по цветам.
– Соедините части и скажите, что у Вас получилось? (График кусочной функции)
– Как построить график кусочной функции? Попробуйте вспомнить алгоритм.
5. Работа в группах.
Каждая группа получает конверты с заданиями. Учащиеся внутри группы сами определяют, кто и какую часть будет строить. Построив каждый кусочек функции на листе, учащийся выполняет построение на компьютере под руководством учителя информатики.
Необходимо построить таблицу значений “х” и “у”, заполнить для заданного интервала, самостоятельно выбрав шаг.
Для заполнения значений “у” необходимо правильно внести формулы в ячейку таблицы. (Памятка 2.)
Каждый ученик строит согласно своему заданию функцию и сохраняет работу на отдельном листе книги Excel, переименовав его согласно номеру задания.
Далее все части собираются на одном листе, а затем на компьютере. Если группы справились с заданием, то и на листе, и на компьютере графики одинаковы.
6. Обсуждение в мастерской.
Работы вывешиваются на доску. Учащиеся сравнивают полученный график с макетом, собранным ими в начале урока. Оценивают работы друг друга. Высказывают свои мнения.
Группа 1 получила после выполнения задания график вида:
Группа 2 получила после выполнения задания график вида:
Группа 3 получила после выполнения задания график вида:
Группа 4 получила после выполнения задания график вида:
7. Оценочно-рефлексивная деятельность.
Каждому ученику предлагается оценить свои чувства после выполнения работы. Для этого, на доске расположены 3 рисунка. Каждый ученик подходит к доске и прикрепляет к выбранному им рисунку клейкую бумагу. В конце подсчитывается количество прикреплённых бумажек к тому или иному рисунку. Обсуждается, почему выбрано то или иное настроение.
В конце урока каждому ученику вручается сертификат и выполненная им работа.
Кусочно-линейная функция
Ситуация, когда движение или другое явление можно описать одной линейной функцией, определенной на интервале $-\infty \lt t \lt +\infty$, в действительности невозможна. Хотя бы потому, что возраст Вселенной велик, но не бесконечен.
На практике в течение некоторого времени тело может двигаться, потом – покоиться, потом – опять прийти в движение, но уже с другой скоростью и в другом направлении и т.п. Как задать подобную зависимость?
Допустим, турист идет из начальной точки по прямой тропинке в течение 2 ч со скоростью 5 км/ч, затем останавливается отдохнуть на 1ч и возвращается обратно по той же тропинке со скоростью 4 км/ч. Нам нужно найти формулу для расстояния s(t) от начальной точки на протяжении всего похода.
Изобразим зависимость s(t) графически:
Первый отрезок AB легко записать: $ s_1 (t) = 5t,0 \le t \lt 2$
С отрезком BC тоже всё ясно: $s_2 (t) = 10,2 \le t \lt 3$
Осталось найти формулу для отрезка CD. Для него известен угловой коэффициент, равный скорости k = -4; знак «минус» оттого, что турист возвращается обратно. Формула имеет вид $s_3 (t) = -4t+b$. Также, нам известны координаты C(3;10).
Подставляем: $10 = -4 \cdot 3+b \Rightarrow b =22$. Осталось рассчитать момент возвращения:
$$0 = -4t_
Значит, формула движения на отрезке $CD:s_3 (t) = -4t+22,3 \le t \le 5,5.$
$$s(t) = <\left\< \begin
Важным свойством заданной функции является выполнение условий согласования:
$$ s_1 (2) = s_2 (2) = 10,s_2 (3) = s_3 (3) = 10$$
Наша функция «сшита» на концах промежуточных интервалов.
$$x f(x) = <\left\< \begin
называется кусочно-линейной .
При этом для функции на краях интервалов выполняются условия согласования:
Графиком кусочно-линейной функции является ломаная линия
Знак модуля в линейных функциях
$$ |x| = \left[ \begin
Если в формуле для линейной функции содержится знак модуля, то после его раскрытия получается кусочно-линейная функция.
Мы заменили квадратную скобку со значением «или» на фигурную скобку со значением «и», поскольку именно смысл объединения — «и того, и другого» — вкладывается в определение кусочно-линейной функции .
Примеры
Пример 1. Представьте функцию с модулем в виде кусочно-линейной и постройте её график:
б) $ y = 2|x|-1 = <\left\< \begin
Пример 2*. Представьте функцию с модулем в виде кусочно-линейной и постройте её график:
Как видно из этого примера, аналитически выводить формулу для двух модулей очень нелегко.
Гораздо легче сразу построить график, если следовать следующим простым правилам преобразования.
Шаг 1. Строим y = 2x-1
Шаг 2. Строим y = 2|x|-1 по правилу: |x| отражает часть графика для положительных $x \ge 0$ влево, зеркально относительно оси Y
Шаг 3. Строим y = |(2|x|-1)| по правилу: общий модуль отражает участок графика с отрицательными $y \lt 0$ вверх, зеркально относительно оси X