Что значит частота процессора в режиме турбо

Что значит частота процессора в режиме турбо

Из-за чего низкая производительность процессора Intel на ноутбуке. Как его можно ускорить? (про Turbo Boost)

Не так давно «разбирался» с медленной работой одного ноутбука (замечу, что моделька была оснащена современным на 2018г. Intel Core i7-7700HQ, т.е. достаточно производительная штука ) .

Как оказалось в последствии, причинами почему он притормаживал в играх — была отключенная технология Turbo Boost (есть на современных процессорах, позволяет поднимать производительность процессора во время нагрузки) , и не обновленные драйвера на видеокарту (использовались те, что были «поставлены» при инсталляции Windows).

Думаю, что с подобной проблемой (низкой производительности) сталкиваются многие пользователи своих устройств. Собственно, эта статья как раз о том, какие параметры могут сказаться на быстродействии ноутбука, как их проверить и поменять.

Материал актуален и для современных ноутбуков (2021-2022г.) с ЦП Intel Core i3, i5, i7.

Причины спада производительности процессора. Как ускорить ноутбук

Настройки электропитания

Первое, что порекомендую сделать — это обратить внимание на 📌электропитание.

Дело в том, что настройки по умолчанию на большинстве ноутбуков установлены для «оптимальной» работы устройства (т.е. часто направлены на экономию энергии, чтобы устройство могло дольше проработать от аккумуляторной батареи). При этом, если выставлено пониженное питание процессора — будет автоматически отключена функция Turbo Boost (что серьезно скажется на производительности).

Для начала обратите внимание на системный трей: там должен быть значок «батареи». Щелкнув по нему левой кнопкой мышки — можно увидеть окно, в котором есть ползунок «производительности», сдвиньте его на максимум.

Режим питания

Далее необходимо 📌открыть панель управления, раздел «Оборудование и звук/Электропитание» . После необходимо либо выбрать схему электропитания с высокой производительностью, либо открыть настройки текущей схемы (как на скрине ниже). 👇

Затем перейти по ссылке «Изменить дополнительные параметры питания» .

Далее найти и раскрыть вкладку «Управление питанием процессора» : минимальное и максимальное состояние процессора выставить на 100% (как от батареи, так и от сети, пример на скрине ниже). 👇

Управление питанием процессора

Управление питанием процессора

Кроме этого, обратите внимание на различные менеджеры питания, идущие в комплекте к вашим драйвера на ноутбук. Например, подобные штуки есть у Lenovo, Sony и пр. производителей.

Менеджер питания в ноутбуке Lenovo

Не «работает» Turbo Boost

Turbo Boost — это технология Intel, которая автоматически увеличивает тактовую частоту процессора при высокой нагрузке. Что в свою очередь проводить к увеличению производительности. Если «отбросить» некоторую терминологию, то это напоминает «умный саморазгон» ЦП.

Поддерживают эту технологию процессоры Intel Core i5, i7 (и i3 8+ поколения). Чтобы проверить, поддерживает ли эту технологию именно ваш ЦП, необходимо зайти на сайт https://ark.intel.com/#@Processors и найти модель своего процессора. Если поддерживает, в характеристиках увидите строку «Max Turbo Frequency» (см. скрин ниже).

Чтобы узнать, используется ли технология Turbo Boost вашим ноутбуком, необходимо установить одну из спец. утилит:

  1. на официальном сайте Intel есть спец. монитор, для слежения за производительностью процессора (см. скрин ниже, слева). Если ваша производительность ЦП «прыгает» выше отметки темно синего цвета (в примере ниже 2,5 GHz) — то Turbo Boost поддерживается. Для тестирования — запустите какую-нибудь игру/просмотр фильма и пр. — в главном окне программы (вкладка CPU) обратите внимание на параметр Core Speed (частота там будет постоянно меняться, но ее максимум должен достигать того значения, которое мы видели в спецификации ЦП, в графе Max Turbo Frequency, т.е. 3,1 GHz или 3100 MHz, что одно и тоже (см. скрин ниже и выше)).

Работает ли Turbo Boost на ноутбуке

Работает ли Turbo Boost на ноутбуке (кликабельно). Monitor с сайта Intel и утилита (справа) CPU-Z

Из-за чего может не работать Turbo Boost (*если он поддерживается вашим ЦП):

  1. из-за настроек электропитания (обязательно выставите питание ЦП на 100%, см. первый шаг в статье);
  2. отсутствие драйверов (утилиты для авто-обновления);
  3. технология может быть отключена в BIOS/UEFI (см. скрин ниже, Turbo Mode). 📌 О том, как войти в BIOS

Turbo Boost (UEFI) / Кликабельно

Высокая температура, перегрев

Еще одна достаточно популярная причина снижения производительности ноутбуками — это 📌перегрев.

Дело в том, что, когда температура процессора достигает определенной точки — он начинает снижать свое быстродействие (чтобы уменьшить температуру).

Если температура продолжает расти и доходит до критической точки — устройство выключается. Современная двухуровневая защита (возможно, слышали уже где-то этот термин).

Кстати, критическая температура процессора, при достижении которой ноутбук выключится, указана в спецификации на сайте Intel (см. графу «T junction»).

T junction (температура, при достижении который, ПК выключится)

T junction (температура, при достижении который, ПК выключится)

Вообще, в целом, крайне нежелательно, чтобы температура процессора превышала 70° C.

📌 В помощь!

О том, как узнать текущую температуру, что считается нормой, и как бороться с перегревом, можете узнать из этой статьи: https://ocomp.info/greetsya-noutbuk.html

Загрузка посторонними приложениями

Нередко, когда производительность снижается из-за того, что помимо игры, которую запустил пользователь (скажем), на ноутбуке запущены какие-то сторонние «тяжелые» приложения. Нередко, когда пользователи ловят вирусы-майнеры (ставшие популярными в последнее время).

Для начала рекомендую открыть диспетчер задач (сочетание Ctrl+Shift+Esc) и отсортировать приложения по и нагрузке на ПЦ. Нередко, когда «непонятные» процессы нагружают систему (я уж не говорю о том, что иногда ЦП загружен, а чем — диспетчер может не показать. ).

Диспетчер задач

📌 В помощь!

Рекомендую ознакомиться со статьей о том, почем может быть загружен ЦП без видимой причины: https://ocomp.info/protsessor-zagruzhen-na-100-i-tormozit.html

*

Также не лишним будет проверить ПК полностью на вирусы и вредоносное ПО (отмечу, что одного классического антивируса часто недостаточно для этой процедуры). О том, как это сделать, см. эту статью: https://ocomp.info/esli-antivirus-ne-vidit-virusov.html

Не оптимальные настройки видеодрайвера и графики игры

Т.к. многие чаще всего недовольны производительностью именно в играх — вынес эту тему отдельный подраздел статьи.

*

Большинство пользователи не верят, что только за счет задания настроек видеодрайвера и самой игры — можно существенно повысить количество FPS. Отмечу, что порой FPS увеличивается на 100% и более!

Первое, что порекомендую, это оптимизировать настройки видеодрайвера. Т.е. выставить наибольшую производительность и отключить некоторые «эффекты» (сделать это можно, если зайти в настройки видеодрайвера, и активировать режим для опытного пользователя).

Настройка графики Intel

У меня на блоге уже есть 3 статьи по настройке видеокарт от Intel, AMD, nVidia. Чтобы здесь не повторяться, привожу ссылки:

  1. AMD — https://ocomp.info/kak-uskorit-videokartu-amd-radeon.html
  2. nVidia — https://ocomp.info/kak-povyisit-proizvoditelnost-videokart-nvidia.html
  3. IntelHD — https://ocomp.info/kak-uskorit-videokartu-intelhd-povyishenie-proizvoditelnosti-minimum-na-10-15.html

Кроме этого, обратите внимание на настройки графики в самой игре. Особое внимание на:

    (чем оно выше, тем большая нагрузка на видеокарту, при его уменьшении — увеличивается кол-во FPS);
  1. качество графики;
  2. детализация;
  3. эффекты и тени (если есть).

На что обратить внимание при настройке графики игры // на примере Civilization IV

На что обратить внимание при настройке графики игры // на примере Civilization IV

📌 В помощь!

Почему тормозят игры (даже на мощном компьютере)? Устраняем лаги и тормоза — https://ocomp.info/pochemu-tormozyat-igryi.html

Не оптимизированная система

И еще не могу не отметить в этой статье, что несколько увеличить быстродействие ноутбука можно за счет оптимизации Windows. Как правило, она включает в себя несколько этапов:

Почему процессоры Intel потребляют больше ожидаемого: требования к теплоотводу и турбо-режим

В последнее время сообщество любителей самостоятельной сборки ПК пронизано темой энергопотребления. У новейших восьмиядерных процессоров от Intel показатель TDP заявлен в 95 Вт, однако пользователи наблюдают, как те потребляют 150-180 Вт, что совершенно не имеет смысла. В этой инструкции мы объясним вам, почему это происходит, и почему это доставляет столько проблем авторам обзоров железа.

Что такое TDP (Thermal Design Power, требования к теплоотводу)

Для каждого процессора Intel гарантирует определённую рабочую частоту с определённой мощностью, часто имея в виду определённый кулер. Большая часть людей приравнивает TDP к максимальному энергопотреблению, учитывая, что в расчётах тепловая мощность процессора, которую необходимо рассеять, равна мощности, им потребляемой. И обычно TDP обозначает величину этой мощности.

Но, строго говоря, TDP относится к возможностям кулера по рассеиванию энергии. TDP – это минимальная возможность кулера, гарантирующая указанную эффективность. Часть энергии рассеивается через сокет и материнскую плату, а значит, рейтинг кулера может быть ниже TDP, но в большинстве обсуждений TDP и энергопотребление обычно означали одно и то же: сколько энергии процессор потребляет под нагрузкой.

В рамках системы TDP можно установить в прошивке. Если процессор использовал TDP в качестве максимального ограничения по мощности, то мы бы увидели, как та же измерительная программа выдаёт подобные графики для процессоров высокой мощности с несколькими ядрами.

В последние годы Intel использовала именно такое определение TDP. Для любого заданного процессора Intel гарантировала рабочую частоту (базовую частоту) для конкретной мощности – TDP. Это значит, что процессор типа 65 Вт Core i7-8700, с обычной частотой 3,2 ГГц, и 4,7 ГГц в турбо-режиме, гарантированно будет потреблять до 65 Вт только при работе на частоте в 3,2 ГГц. Intel не гарантирует эффективной работы выше указанных 3,2 ГГц и 65 Вт.

Кроме базовых показателей, Intel также использует турбо-режим. Что-то вроде Core i7-8700 может показывать в турбо-режиме 4,7 ГГц, и потреблять при этом гораздо больше энергии, чем процессор, работающий на 3,2 ГГц. Турбо-режим для всех ядер на процессоре Core i7-8700 работает на частоте 4,3 ГГц – куда как больше гарантированной 3,2 ГГц. Ситуация усложняется, когда турбо-режимы не опускаются до базовой частоты. То есть, если процессор будет работать с постоянным превышением TDP, купленный вами кулер на 65 Вт (или тот, что шёл в комплекте) станет узким местом. Если вам нужно больше быстродействия, такой кулер надо выкинуть и взять что-то получше.

Однако производитель вам этого не сообщает. Если охлаждения для турбо-режимов будет недостаточно, а процессор достигнет температурного потолка, то большая часть современных процов перейдут в режим ограничения мощности, уменьшив быстродействие с тем, чтобы оставаться в рамках заданного энергопотребления. И в результате быстрый процессор не достигает пределов своих возможностей.

Значит, TDP ничего не значит? Почему это стало проблемой только сейчас?

За последнее десятилетие методика использования термина TDP не поменялась, а вот процессоры начали по-другому использовать свой энергетический бюджет. Недавнее появление шести- и восьмиядерных потребительских процессоров с частотами за 4 ГГц означает, что новые процессоры с большой загрузкой превышают заявленное TDP. В прошлом мы видели, как четырёхядерные процессоры с обозначенным рейтингом в 95 Вт использовали только 50 Вт даже под полной нагрузкой в турбо-режиме. И если мы добавляем ядра, а обозначение TDP на упаковке не меняем, то что-то должно поменяться.

Тайные цифры, которых нет на упаковке

Внутри каждого процессора Intel определяет несколько уровней энергии на основе возможностей и ожидаемых рабочих режимов. Однако все эти уровни энергии и возможности можно подстраивать на уровне прошивки, в результате чего OEM-производители решают, как эти процессоры будут работать в их системе. В итоге значение потребления энергии процессором в системе оказывается весьма размытым показателем.

Для простоты можно следить за тремя важными значениями. Intel называет их PL1 (уровень энергии 1), PL2 (уровень энергии 2) и T (Tau).

PL1 – эффективное равномерное ожидаемое потребление энергии в долгосрочной перспективе. По сути, PL1 обычно определяется, как TDP процессора. То есть, если TDP равно 80 Вт, то PL1 равно 80 Вт.

PL2 – краткосрочное максимальное потребление энергии процессором. Эта величина выше PL1, и в это состояние процессор переходит под нагрузкой, что позволяет ему использовать турбо-режимы вплоть до максимального значения PL2. Это значит, что если Intel определила несколько турбо-режимов у процессора, они будут работать, только когда PL2 доходит до максимального энергопотребления. В режиме PL1 турбо не работает.

Tau – временная переменная. Она определяет, как долго процессор должен оставаться в режиме PL2 перед тем, как откатиться на PL1. Tau не зависит от мощности и температуры процессора (ожидается, что при достижении температурного ограничения будет использоваться другой набор сверхнизких значений напряжения и частоты, а система PL1/PL2 перестаёт работать).

Вот официальные определения от Intel:

Давайте разберём ситуацию большой нагрузки на процессор.

Сначала он начинает работу в режиме PL2. Если нагрузка однопоточная, мы должны достичь верхнего значения турбо, которое обозначено в спецификации. Обычно энергопотребление одного ядра не приблизится к значению PL2 всего чипа. Если мы будем продолжать нагружать ядра, процессор отреагирует, уменьшая частоту турбо-режима в соответствии с по-ядерными значениями, определяемыми Intel. Если энергопотребление процессора достигает значения PL2, то его частота изменяется так, чтобы не выходить за рамки PL2.

Когда система находится под серьёзной нагрузкой долгий промежуток времени, «Tau» секунд, прошивка должна перейти на PL1 как на новое ограничение по мощности. Таблицы турбо перестают применяться – они работают только с режимом PL2.

Если потребление выходит за пределы PL1, тогда частота и напряжение изменяются так, чтобы потребление энергии оставалось в этих пределах. То есть процессор целиком уменьшает частоту от состояния PL2 до состояния PL1 на время работы под нагрузкой. Это значит, что температура процессора должна уменьшиться, и это должно увеличить время жизни процессора.

Режим PL1 работает, пока не исчезнет нагрузка, и ядро не перейдёт в состояние бездействия на определённое количество времени (обычно до 5 секунд). После этого режим PL2 снова может быть включён при появлении другой большой нагрузки.

Приведём примеры некоторых величин – Intel перечисляет несколько вариантов в спецификациях различных процессоров. Для примера я взял Core i7-8700K. Для этого проца верно следующее:

PL1 = TDP = 95 Вт
PL2 = TDP * 1.25 = 118.75 Вт
Tau = 8 сек

В данном случае система должна суметь разогнаться до 119 Вт на восемь секунд, а потом снова откатится назад до 95 Вт. Так работает уже несколько поколений процессоров Intel, и по большей части, это не имело особого значения, поскольку энергопотребление процессора целиком часто оказывалось сильно ниже значения PL1 даже под полной нагрузкой.

Однако вся ерунда начинается, когда в игру вступают производители материнских плат, поскольку PL1, PL2 и Tau можно настраивать в прошивке. К примеру, на графике выше можно снять ограничения с PL2, а PL1 назначить 165 Вт и 95 Вт.

Мир случайных чисел

В основном я буду говорить о потребительской электронике. Часто PL1, PL2 и Tau тщательно контролируются в таких ограниченных по охлаждению условиях, как ноутбуки или небольшие ПК. Я знаком с несколькими мощными, и в то же время стильными вариантами ПК, у которых PL2 также приравнивали к TDP, чтобы процессор смог немного разогнаться, но не до такой степени, чтобы нагрузка одного-двух ядер выходила за пределы TDP.

Однако в наших обзорах CPU после распространения шестиядерных процессоров мы часто начали видеть цифры гораздо большие, чем PL1 или PL2, и это потребление продолжается сколь угодно долго, если только не выходит за пределы ограничений температуры. Почему это происходит?

В любом современном BIOS, в особенности у основных производителей мат.плат, будут присутствовать настройки по ограничению мощности (краткосрочное и долгосрочное) и длительности. В большинстве случаев по умолчанию пользователю неизвестно, в какое значение они установлены, поскольку там будет написано Auto, что является кодовым обозначением «мы знаем, какое значение им назначить, не волнуйтесь». Производители запишут величины в память и будут их использовать, но пользователь увидит только Auto. В результате можно назначить PL2 в 4096 Вт и сделать Tau очень большим, к примеру, 65535, или -1 (бесконечность – зависит от варианта BIOS). Это означает, что CPU без перерыва будет работать в режиме турбо, пока не превысит температурные ограничения.

Зачем производители так поступают? Тому может быть много причин, хотя конкретные причины у конкретных производителей могут разниться.

Во-первых, это означает, что пользователь может поддерживать турбо-режим постоянно, и каждое ядро будет работать в режиме турбо каждую секунду. Результаты измерений быстродействия будут доставать до небес, в обзорах или когда пользователя меряются показателями, всё выглядит прекрасно,

Во-вторых, продукты для этого и разрабатываются. Intel часто с каждым запуском определяет спецификацию мат.платы по умолчанию (у них даже были свои материнки, которые они продавали в розницу), с определённым количеством фаз питания и с ожидаемым временем жизни. Производители, очевидно, могут внедрять свои варианты: больше фаз питания, более мощные фазы, особый подвод питания для улучшения эффективности, и т.д. Если их плата может поддерживать турбо-режим всех ядер беспрерывно, то почему бы и нет?

В-третьих, производители более дорогих моделей плат знают, что энтузиасты будут использовать для них улучшенные системы охлаждения. Если процессор потребляет более 160 Вт, а у пользователя есть приличная система охлаждения, тогда турбо-режим на всех ядрах улучшит впечатление от продукта. Стандарты Intel определяются для рекомендованных компанией кулеров.

Так как же правильно, кому доверять, в чём разница?

Intel назначает стандарты для своих запчастей. PL1, PL2, Tau, схема материнки, настройки прошивки – для всего есть значения по умолчанию, рекомендованные Intel. Некоторые из них публичные, например, те, что Intel указывает в документах, некоторые – конфиденциальные (и Intel нам о них не расскажет, как бы мы ни упрашивали). Однако это всё же рекомендованные значения. А по итогам, производители материнских плат могут делать всё, что им заблагорассудится. И они так и делают.

В результате, к примеру, мне тестировать оборудование из-за этого становится сложнее. Разным пользователям захочется, чтобы наши настройки были:
1. Рекомендованными Intel,
2. Как из коробки,
3. Вывернуты на максимум.

И, естественно, рекомендации Intel дадут куда как меньшие показатели, чем «из коробки», а вариант «вывернуты на максимум» говорит сам за себя.

Стоит отметить, что до сих пор во всех тестах во всех обзорах CPU железо запускалось на настройках «из коробки», а не «рекомендованных Intel».

Чтобы дать некий контекст по значениям измерений, мы использовали мощный CPU и
получили следующие результаты в 25-30 секундном тесте с полной нагрузкой:

AnandTech PL2 Tau PL1 Result
Unlimited 4096W 999s 4096W 100%
Intel Spec, 165W 207W 8s 165W 98%
Constant 165W 165W 1s 165W 94%
Intel Spec, 95W 118W 8s 95W 84%
Constant 95W 95W 1s 95W 71%

В последнее время было замечено, что некоторые производители материнских плат меняют свою стратегию по PL1/PL2/Tau, и урезают значение Tau до чего-то разумного, вроде 30 секунд. При запуске измерений скорости на таких материнских платах, пользователи получают результаты меньше, чем обычно, хотя эти результаты оказываются ближе к спецификациям Intel.

Дело в том, что когда на материнских платах стоит значение Auto, производитель обычно не раскрывает точную величину этого значения. В результате описывать работу такого оборудования очень тяжело. А ещё эти значения могут меняться в зависимости от установленного процессора.

Мы обычно проводим тестирования с настройками «из коробки», за исключением памяти, с которой мы используем значения, рекомендованные производителем. Мы считаем, что это наиболее честный способ сообщать читателям о том, на какую скорость они смогут рассчитывать, когда практически никакие настройки не менялись. В реальности это обычно означает, что PL2 установлено в какое-то очень большое значение, а Tau – в очень долгое. Мы постоянно сталкиваемся с режимом турбо, пока температура остаётся в установленных пределах.

Сегодняшняя ситуация, и что мы можем с ней сделать

Давно хотел написать подобную статью, по меньшей мере, с момента запуска Kaby Lake. Большая часть процессоров в потребительских материнских платах работает с неограниченным PL2, и это считалось нормальным годами. И только по результатам тестирования Core i9-9900K мы начали замечать нечто странное. В нашей статье на прошлой неделе по поводу нового Xeon E написано, что наша материнская плата Supermicro буквально следует рекомендациям от Intel. Может показаться очевидным, что более коммерческая/серверная плата будет следовать спецификациям от Intel, но вживую я лично видел такое впервые. Очевидно, что потребительские платы по таким спецификациям не работают, и не работали. Я бы сказал, что собственные результаты тестирования от Intel (и результаты тестирования процессоров Intel от AMD) на потребительских материнках тоже не соответствуют спецификациям от Intel.

  • TDP пиковое для PL2
  • TDP долговременное для PL1.

Таким образом Intel и другие смогут объяснить пиковое потребление и базовую частоту.

Если пользователи хотят, чтобы потребительские материнские платы изменились, то это будет сложнее сделать. Все производители хотят опередить друг друга, поэтому мы сталкиваемся с такими вещами, как опция Multi-Core Turbo, включённая по умолчанию. Производители предпочитают путь «неограниченного PL2», поскольку это позволяет им пролезать на вершины чартов быстродействия. А вот в ноутбуках с ограниченными возможностями по охлаждению часто заданы свои варианты PL1, PL2 и Tau, и часто они строго соответствуют этим параметрам.

Вопрос в том, насколько спецификации от Intel важны для настольных процессоров от Intel? Если нам надо следовать этим рекомендациям буквально, может, мы сделаем ещё один шаг, и будем использовать только стоковые кулеры?

Intel Turbo Boost и AMD Turbo CORE

Intel Turbo Boost — технология, автоматически повышающая при максимальной нагрузке частоту одного или нескольких процессорных ядер выше номинала, если при этом температура и энергопотребление процессора остаются в пределах его спецификаций. Она позволяет поднимать производительность как однопоточных, так и многопоточных приложений, в настоящее время её влияние особенно заметно в приложениях, преимущественно использующих одно или два ядра (большинство современных игр).

Технологию Intel Turbo Boost поддерживают настольные и мобильные процессоры Core i7, включая варианты Extreme Edition, настольные и мобильные процессоры Core i5, а также серверные процессоры Intel Xeon для разъёмов LGA1366 и LGA1156. Полный список можно посмотреть на сайте intel.com.

Turbo Boost как правило, включена в BIOS материнских плат по умолчанию (и её можно отключить принудительно, воспользовавшись соответствующим пунктом CMOS Setup), а её активация в конкретный момент времени зависит от нагрузки, создаваемой приложениями и запаса по температуре и энергопотреблению.

Прибавка тактовой частоты осуществляется порциями по 133МГц, её максимальная итоговая величина зависит от модели процессора и количества активных ядер в конкретный момент времени, при этом все активные ядра получают одинаковую прибавку в частоте. Например, настольные процессоры Core i7 920/930/940/950/960 могут увеличивать частоту трёх или всех четырёх ядер на 133МГц, а одного или двух (при условии неактивности остальных) — на 266МГц.

Мобильные процессоры способны гораздо сильнее изменять свою частоту при помощи этой технологии, например Core i5-540UM способен при обоих активных ядрах потратить четыре 133МГц порции, т.е. разогнаться с 1.2ГГц до 1.73ГГц, а при одном активном ядре — шесть, т.е. аж до 2ГГц.

Указываемая в характеристиках процессора максимальная тактовая частота в режиме TurboBoost достигается, как правило, при одном или (максимум) двух активных ядрах. При разгоне процессора поднятием опорной тактовой частоты прирост быстродействия в режиме Turbo Boost пропорционален приросту быстродействия в номинальном режиме.

Intel Turbo Boost 2.0 — эту технологию поддерживают процессоры Intel Core i7/i5 второго поколения созданные на основе микроархитектуры Intel Sandy Bridgе. Основным отличием от первой версии является способность разгонять не только процессорные ядра, но и встроенное в процессор графическое ядро.

AMD Turbo CORE — аналогичная технология динамического поднятия тактовой частоты активных ядер, на момент написания этого FAQ встречается только в процессорах Phenom II X6 на ядре Thuban, принципиальные отличия от Turbo Boost таковы: максимальную прибавку(у старших моделей она достигает 500МГц) в тактовой частоте могут получать одновременно до трёх активных ядер, а неактивные ядра не отключаются, а переводятся в режим пониженного энергопотребления с тактовой частотой 800МГц.

Ссылка на основную публикацию